Geometry Quarter 3 Exam Review Modules 9–13 DUE:_____ Name _____ Per _____ Date _____

Show all your work. Box or circle your final answer when an answer line is not provided. When appropriate, write your answers in simplest radical form, as a simplified improper fraction, AND as a decimal rounded to the nearest hundredths place. REMEMBER UNITS!

MOD 9

- **1.** The centroid of a triangle is a point where the ______ intersect.
 - A) medians
 - B) perpendicular bisectors
 - **C)** angle bisectors
 - **D)** midpoints

2. The circumcenter of a triangle is a point where the _____ intersect.

- A) medians
- **B)** perpendicular bisectors
- **C)** angle bisectors
- **D)** midpoints
- **3.** The incenter of a triangle is a point where the _____ intersect.
 - A) medians
 - **B)** perpendicular bisectors
 - **C)** angle bisectors
 - **D)** midpoints
- **4.** Construct the circumcenter for $\triangle ABC$.

- In the grid to the right, draw a median of ∆XYZ from X and label the intersection with the opposite side R. Then answer the questions below.
 - **a.** What is the area of $\triangle XYR? \triangle XZR? \triangle XYZ?$

b. Draw another median in the triangle and determine the coordinated of the centroid.

Centroid: (_____, ____) MOD 10

- **6.** Name the type of transformation and the coordinates corresponding to Point A'.
 - **A)** Reflection over x = 0; (3, 4)
 - **B)** Rotation about (1,0); (6, 4)
 - **C)** Reflection over x = 1; (6, 4)
 - **D)** Translation right 10 units; (6, 4)
- **7.** Triangle DEF is rotated 90° counter clockwise about the origin. Identify the correct coordinates of the image. (Choose all that apply).
 - **A)** D' (-3, 1)
 - **B)** F' (-5, 1)
 - **C)** E' (-1, 6)
 - **D)** D' (1, 3)

- **8.** Which composition of rigid motion transformations was used to obtain A"B" in the diagram below? (Choose all that apply).
 - A) Reflection over x-axis, then a vertical translation
 - **B)** Reflection over x = 1, then a vertical translation
 - **C)** Reflection over y = 1, then a horizontal translation
 - **D)** Vertical translation, then a reflection over x = 1.
- **9.** Using the composition below, what are the coordinates of the image of \overline{CD} if C(-2, 3) and D(3, 4)? If needed, use the grid to the right.

Rotate 90° clockwise about the origin, then reflect over x = 1

- A) C'(1, 2), D'(2, 3)
 B) C'(-5, -2), D'(-6, 3)
 C) C'(-1, 2), D'(-2, -3)
 C) C'(-1, 2), D'(-2, -3)
- **D)** C'(-1, 2), D'(2, 3)

10. In the coordinate plane below,

a. Draw and label $\Delta A'B'C'$, which is a reflection of ΔABC over x = -3.

b. Draw and label ΔDIG , which is a translation of ΔABC T(x, y) = (x + 6, y + 2), followed by a 90° counterclockwise rotation about the origin.

11. Define 2 different rigid motion transformations that could be performed to show $\Delta DEF \cong \Delta XYZ$.

MOD 11

- **12.** Translate rectangle CDEF such that T(x, y) = (x 2, y + 1), then dilate about point C', using a scale factor of 3 to create rectangle LMNO such that CDEF ~ LMNO.
 - a. Determine the perimeter of CDEF and LMNO.

 P_{CDEF} =

P_{LMNO} =

b. Determine the area of CDEF and LMNO.

 $A_{CDEF} =$

A_{LMNO} =

c. Draw the similarity transformation described above in the grid to the right.

MOD 12

- **13.** $\Delta XOY \cong \Delta ZOW$. Find each of the following. (7 pts)
 - a. x = _____ b. y = _____
 - **c.** XY = _____
 - **d.** *m*∠OWZ = _____

Decide whether enough information is given to prove that the triangles are congruent. If there is enough information, state the congruence postulate you would use.

15. $\triangle XYW, \triangle ZWY$

18. $\triangle DKA, \triangle TKS$

16. $\triangle MAE, \triangle TAE$

17. $\triangle KHJ$, $\triangle JLK$

19. *△JKM*, *△NKL*

20. $\triangle TRA$, $\triangle ARG$

In 21 – 22, write a two-column proof.

21. Given: O is midpoint of \underline{MQ} O is midpoint of \overline{NP} **Prove:** $\underline{\Delta MON} \cong \underline{\Delta QOP}$

	What statements can we make	How do we know those
	that must be true?	statements must be true?
Part I	•	•
	•	•
Part II	•	•
	•	•
	•	•
Part III	•	•

23. \overline{PB} is the perpendicular bisector of \overline{RT} . Find the measure of the numbered angles and value of the variables.

Ρ

MOD 13

Find the value of the variable(s). Then, find the lengths of the sides and/or the measure of the angles.

26. Find the indicated variable(s) or side length.

b) Parallelogram WATE

c) In isosceles trapezoid JKLM, ML = 3x + 1 and JK = 2x + 7.

MK = _____

27. Find the measure of angle A & D.

m∠A = _____

m∠D =_____

Find the area of the trapezoid and parallelogram. **28.**

29.

- **30.** WXYZ is a quadrilateral. Which information would allow you to conclude that WXYZ is a parallelogram? *Hint:* Draw diagrams to help you. (Choose all that apply.)
 - A) $\overline{WX} \cong \overline{ZY} \& \overline{WZ} \cong \overline{XY}$
 - **B)** $\angle W \cong \angle Y \& \angle X \cong \angle Z$
 - **C)** $\overline{WX} \| \overline{ZY} \& \overline{WZ} \cong \overline{XY}$
 - **D)** $\overline{WZ} \| \overline{XY} \& \overline{WX} \| \overline{ZY}$
 - **E)** $\overline{WZ} \cong \overline{XY} \& \overline{WZ} \| \overline{XY}$