\qquad
\qquad Date \qquad DUE: \qquad
Show all your work. Box or circle your final answer when an answer line is not provided. When appropriate, write your answers in simplest radical form, as a simplified improper fraction, AND as a decimal rounded to the nearest hundredths place. REMEMBER UNITS!

MOD 9

1. The centroid of a triangle is a point where the \qquad intersect.
A) medians
B) perpendicular bisectors
C) angle bisectors
D) midpoints
2. The circumcenter of a triangle is a point where the \qquad intersect.
A) medians
B) perpendicular bisectors
C) angle bisectors
D) midpoints
3. The incenter of a triangle is a point where the \qquad intersect.
A) medians
B) perpendicular bisectors
C) angle bisectors
D) midpoints
4. Construct the circumcenter for $\triangle A B C$.

5. In the grid to the right, draw a median of $\triangle X Y Z$ from X and label the intersection with the opposite side R. Then answer the questions below.
a. What is the area of $\Delta X Y R ? \Delta X Z R ? \Delta X Y Z ?$
b. Draw another median in the triangle and determine the coordinated of the centroid.

Centroid: \qquad , \qquad _)

MOD 10
6. Name the type of transformation and the coordinates corresponding to Point A^{\prime}.
A) Reflection over $x=0 ;(3,4)$
B) Rotation about (1,0); (6, 4)
C) Reflection over $x=1$; $(6,4)$
D) Translation right 10 units; $(6,4)$

7. Triangle DEF is rotated 90° counter clockwise about the origin. Identify the correct coordinates of the image. (Choose all that apply).
A) D' $(-3,1)$
B) $\mathrm{F}^{\prime}(-5,1)$
C) $\mathrm{E}^{\prime}(-1,6)$
D) $\mathrm{D}^{\prime}(1,3)$

8. Which composition of rigid motion transformations was used to obtain A"B" in the diagram below? (Choose all that apply).
A) Reflection over x-axis, then a vertical translation
B) Reflection over $x=1$, then a vertical translation
C) Reflection over $y=1$, then a horizontal translation
D) Vertical translation, then a reflection over $x=1$.

9. Using the composition below, what are the coordinates of the image of $\overline{C D}$ if $\mathrm{C}(-2,3)$ and $\mathrm{D}(3,4)$? If needed, use the grid to the right.

Rotate 90° clockwise about the origin, then reflect over $x=1$
A) $\mathrm{C}^{\prime}(1,2), \mathrm{D}^{\prime}(2,3)$
B) $\mathrm{C}^{\prime}(-5,-2), \mathrm{D}^{\prime}(-6,3)$
C) $C^{\prime}(-1,2), D^{\prime}(-2,-3)$
D) $C^{\prime}(-1,2), D^{\prime}(2,3)$

10. In the coordinate plane below,
a. Draw and label $\Delta A^{\prime} B^{\prime} C^{\prime}$, which is a reflection of $\triangle A B C$ over $x=-3$.
b. Draw and label $\triangle D I G$, which is a translation of $\triangle A B C$
$T(x, y)=(x+6, y+2)$, followed by a 90° counterclockwise rotation about the origin.

11. Define 2 different rigid motion transformations that could be performed to show $\triangle D E F \cong \triangle X Y Z$.

12. Translate rectangle CDEF such that $T(x, y)=(x-2, y+1)$, then dilate about point C^{\prime}, using a scale factor of 3 to create rectangle LMNO such that CDEF ~ LMNO.
a. Determine the perimeter of CDEF and LMNO.
$P_{\text {CDeF }}=$
$P_{\text {LMNO }}=$
b. Determine the area of CDEF and LMNO.
$\mathrm{A}_{\text {CDEF }}=$
$A_{\text {LMNO }}=$

c. Draw the similarity transformation described above in the grid to the right.

MOD 12

13. $\triangle X O Y \cong \triangle Z O W$. Find each of the following. (7 pts)
a. $x=$ \qquad
b. $y=$ \qquad
c. $X Y=$ \qquad
d. $m \angle O W Z=$ \qquad

14. $\triangle T J M \cong \triangle P H S$
a. $\angle P \cong$ \qquad d. $\overline{J T} \cong$ \qquad
b. $m \angle J=$ \qquad e. $m \angle P=$ \qquad
c. $M T=$ \qquad f. $\triangle H P S \cong$ \qquad

Decide whether enough information is given to prove that the triangles are congruent. If there is enough information, state the congruence postulate you would use.
15. $\triangle X Y W, \triangle Z W Y$

16. $\triangle M A E, \triangle T A E$

19. $\triangle J K M, \triangle N K L$

17. $\triangle K H J, \triangle J L K$

20. $\triangle T R A, \triangle A R G$

In 21 - 22, write a two-column proof.
21. Given: O is midpoint of $\overline{M Q}$

O is midpoint of $\overline{N P}$
Prove: $\triangle M O N \cong \triangle Q O P$

	What statements can we make that must be true?	How do we know those statements must be true?
Part I	\bullet	\bullet
Part II	\bullet	\bullet
	\bullet	\bullet
Part III	\bullet	\bullet

22. Given: $\overline{M Q} \cong \overline{N T}$

$$
\overline{M Q} \| N T
$$

Prove: $\overline{M N} \cong \overline{T Q}$

	What statements can we make that must be true?	How do we know those statements must be true?
Part I	\bullet	\bullet
	\bullet	\bullet
Part II	\bullet	\bullet
	-	\bullet
Part III	\bullet	\bullet

23. $\overline{P B}$ is the perpendicular bisector of $\overline{R T}$. Find the measure of the numbered angles and value of the variables.
$m \angle 1=$ \qquad
\qquad

$$
m \angle 3=
$$

\qquad
\qquad $m \angle 5=$ \qquad $m \angle 6=$ \qquad
$m \angle 7=$ \qquad $m \angle 8=$ \qquad

$$
x=
$$

\qquad

MOD 13

Find the value of the variable(s). Then, find the lengths of the sides and/or the measure of the angles.
24. $M N O P$ is a square.

25. $W X Y Z$ is a rectangle.

26. Find the indicated variable(s) or side length.
a) w = \qquad
$x=$ \qquad
$y=$ \qquad
$z=$ \qquad

b) Parallelogram WATE $W T=$

c) In isosceles trapezoid $J K L M, M L=3 x+1$ and $J K=2 x+7$.
$M K=$ \qquad

27. Find the measure of angle A \& .
$m \angle A=$ \qquad
$m \angle D=$ \qquad

Find the area of the trapezoid and parallelogram.
28.

17.8 ft
29.

30. $W X Y Z$ is a quadrilateral. Which information would allow you to conclude that $W X Y Z$ is a parallelogram? Hint: Draw diagrams to help you. (Choose all that apply.)
A) $\overline{W X} \cong \overline{Z Y}$ \& $\overline{W Z} \cong \overline{X Y}$
B) $\angle W \cong \angle Y$ \& $\angle X \cong \angle Z$
C) $\overline{W X} \| \overline{Z Y} \quad \& \quad \overline{W Z} \cong \overline{X Y}$
D) $\overline{W Z}\|\overline{X Y} \& \overline{W X}\| \overline{Z Y}$
E) $\overline{W Z} \cong \overline{X Y} \& \overline{W Z} \| \overline{X Y}$

