\qquad Date

1. Show that $\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}$ by computing $\sqrt{9+16}$ and $\sqrt{9}+\sqrt{16}$.

Re-write the following square roots as equivalent whole numbers.
2. $\sqrt{5+4}$
3. $\sqrt{3^{2}+4^{2}}$
4. $\sqrt{25-3^{2}}$
5. $\sqrt{13^{2}-25}$
6. Which of the following expressions are equivalent to $\sqrt{96}$?

Expression	Equivalent to $\sqrt{96}$? (Yes or No)	
$4 \sqrt{6}$		
$\sqrt{100}-\sqrt{4}$		
$2 \sqrt{24}$		
$\sqrt{100-4}$		

Solve each equation. Express your answer as a radical with no perfect square factors AND as a decimal (rounded to the thousandths place).
7. $2 x^{2}=24$
8. $x^{2}-80=45$
9. $-3 x^{2}+121=-167$

