Module 9c: Incenter of a Triangle

Math Practice(s):

- -Model with mathematics.
- -Look for & express regularity in repeated reasoning.

Learning Target(s):

- Construct the incenter of a given triangle.
- Understand & apply the angle bisector theorem.
- Understand & explain the differences between the centroid, circumcenter, and incenter.

Homework:

HW#3: 9a #1-3

Warm-up

1. Construct the angle bisector of the angle below using the following steps:

- A. Trace $\angle BAC$ onto patty paper.
- B. Fold the patty paper so points B and C overlap and the crease goes through point A.
- C. Draw point P on the crease on the interior of $\angle BAC$.
- **D.** Draw \overrightarrow{AD} . This is the angle bisector of $\angle BAC$.

2. Construct the angle bisector of the angle below.

- 3. $\angle BAC$ is shown with its bisector \overrightarrow{AD} .
 - Two points have been marked on AD.
 - From each of these two points, line segments (the dashed lines) were constructed so they would be perpendicular to each ray of $\angle BAC$.

Use your ruler to measure the lengths of these dashed line segments. Write the measurements by the four line segments.

erase to show

The Angle Bisector Theorem

Given an angle $\angle BAC$ and its angle bisector \overrightarrow{AD} , any point on \overrightarrow{AD} is ______ equidistant from \overrightarrow{AB} and \overrightarrow{AC} .

• In other words, dropping a perpendicular from any point on the angle bisector to \overrightarrow{AB} or \overrightarrow{AC}

will have equal length

erase to show

Incenter of a Triangle

The incenter of a triangle is the center of the ____largest

circle contained in that triangle.

- In order for the circle to be "contained in the triangle," the circle must be tangent
 to all three sides of the triangle.
- The point of intersection of the three _____ bisector of the triangle.

Example 1: Without finding the angle bisections, use a compass to try to determine the location of the incenter of each of the following triangles.

Too hard to do it without an incenter.

