Module 9a: Area & Medians of a Triangle

Math Practice(s):

- -Model with mathematics.
- -Look for & express regularity in repeated reasoning.

Learning Target(s):

- Explain the differences between the altitude & median of a triangle.

Homework:

HW#1: 9a #1-3

Warm-up

1. State the formula for finding the area of a triangle:

$$A = \frac{1}{2}bh = \frac{bh}{2}$$

2. For each of the following triangles, draw a dashed line to represent the altitude of the triangle (in relation to the side of the triangle labeled as the base, b.

A.

c. b

3. Determine the area of the triangle to the right.

$$A=30$$
 units²

4. Draw the triangle whose vertices are at (-4, -1), (3, -1) and (5, 3). Then, use the area formula to determine the area of this triangle.

Reviewing Medians of a Triangle and the Midpoint Formula

- \triangleright Given triangle $\triangle ABC$, the *median* is a segment from a vertex to the midpoint of the opposite side.
 - \circ D is the midpoint of \overline{AB}
 - \circ \overline{CD} is the __median __of $\triangle ABC$ from point C.

➤ If points K and L are located in the coordinate plane with K = (a, b) and L = (c, d), then the **MIDPOINT** of \overline{KL} is located at $M = \left(\frac{a+c}{2}, \frac{b+d}{2}\right)$.

- · It's a little easier to makes sense of the midpoint formula by thinking of it this way:
 - The midpoint, M, is simply the coordinates of some point: (x, y).
 - The x-coordinate of the midpoint is the average of the x-coordinates of the endpoints.
 - The y-coordinate of the midpoint is the average of the y-coordinates of the endpoints.

- 5. Use the diagram above ($\triangle ABC$ drawn in the coordinate plane) to answer the following questions.
 - A. Determine the area of $\triangle ABC$

$$A = \frac{(8)(6)}{2}$$

- **B.** Draw the median of $\triangle ABC$ from point C. Label the midpoint point M.
- C. Use the midpoint formula to determine the coordinates of M.

A (-3,1)

$$M = \left(\frac{-3+5}{2}, \frac{1+1}{2}\right) = \left(\frac{2}{2}, \frac{2}{2}\right) = (1,1)$$

D. Notice that the median cuts the original triangle into 2 smaller triangles: $\triangle ACM$ and $\triangle BCM$. Determine the area of BOTH of these triangles.

DACM

DBCM

== (4)(6)

 $=\frac{1}{2}(4)(6)$

A= 12 units

A= 12 units

E. What do you notice about the area of $\triangle ACM$ and $\triangle BCM$?

They have the same area.

F. Compare the area of $\triangle ACM$ to the area of the original triangle $\triangle ABC$. Make a conjecture about what the median does to the area of a triangle.

The area of $\triangle ACM$ is half the area of $\triangle ABC$. The median cuts the \triangle in half.