Module 8a: Transversals & the Parallel Postulate

Math Practice(s):

- -Construct viable arguments & critique the reasoning of others.
- -Model with mathematics.

Learning Target(s):

-Understand theorems related to the parallel postulate.

Homework:

HW#12: 8a #1-10

Warm-up

1. The graphs of four linear functions are shown in the coordinate plane below.

A. State the slope of each function.

slope of f:

slope of g: 3

slope of h:

slope of k:

B. State which two functions have graphs that do NOT intersect **and** describe what you notice about the slopes of these lines.

Lines k & f do not intersect, & they he same slope.

(erase to show)

Parallel Lines in the Coordinate Plane

Two distinct lines in the coordinate plane are *parallel* if they have the ____slope.

• Any two distinct vertical lines are parallel (i.e., they both have slope values that are undefined).

(dual page with next)

Example 1:

In the diagram below, $\overline{AB} \parallel \overline{CD}$, and \overline{FE} is a transversal. Use a protractor to find the angle measures.

Angles involving \overline{AB} :

$$m \angle AGF = 15$$
 $m \angle FGB = 6364$
 $m \angle AGH = 6364$
 $m \angle BGH = 116$

Angles involving \overline{CD} :

$$m \angle CHG = 16$$
 $m \angle GHD = 64$
 $m \angle CHE = 66$
 $m \angle DHE = 16$

What do you notice about all of the angle measures you just determined? List as many *unique* pairs of congruent and supplementary angles as you can find.

Congruent		Supplementary	
ZAGF≅ZCHG ZAGF≅ZDHE ZFGB≅ZAGH ZFGB≅ZGHD ZG	3GH=∠CHG 3GH=∠DHE AGH=∠GHD AGH=∠CHE CHG=∠DHE GHD=∠CHE	ZAGFSZFGB ZAGFSZAGH ZAGFSZCHE ZAGFSZCHE ZBGHSZFGB ZBGHSZAGH ZBGHSZCHE ZBGHSZCHE	ZCHG ZZGH ZCHG ZZCHE ZDHEZZGH ZDHEZZCHE

Analyze each of the following pairs of angles that you measured in the diagram on the previous page:

Compare m∠BGH and m∠GHD

They are supplementary

Compare m∠AGH and m∠GHC

They are also supplementary

(erase to show)

The Parallel Postulate

Two lines are parallel if and only if, when they are cut by a transversal, the measure of **two interior angles on the same side of the transversal**

add up to 180° (aka same-side interior angles (supplementary)

• This is known as the *Parallel Postulate* and is one of Euclid's Five Postulates for Geometry.

Example 2: Given $\overline{AG} \parallel \overline{DF}$, find $m \angle EBG$ and $m \angle BED$.

LBED & LBEF are linear pair, so they are supplementary.

m LBED+mLBEF=180°

MLBED + 35 = 180

m LBED = 145°

LEBGGLBEF are Same side interior LS,

so they are supplementary

MLEBG+MLBEF=180° -> [MLEBG=145°

**Linear Pair (#VOC): Two adjacent angles that form a

A D E 35° F

(erase to show)

straight _{angle.}

