Module 4a: Proving the Pythagorean Thm

Math Practice(s):

- -Reason abstractly & quantitatively
- -Look for & express regularity in repeated reasoning.

Learning Target(s):

-Know the Pythagorean Theorem and its converse.

Homework:

HW: Notes 4b page 1

By this time, you should know the relationship between the lengths of the two legs a and b in a right triangle with its hypotenuse c.

The Pythagorean Theorem

In a right triangle with legs of length a and b and hypotenuse of length c,

$$a^2 + b^2 = c^2$$
. **#THM**

What you may not know is that the Pythagorean Theorem also works in reverse...

$$a^2 + b^2 = c^2$$

$$64 + 36 = 100$$

right
$$\triangle$$

$$9^2 + 12^2 = 15^2$$

$$8,9,10$$
 $8^{2}+9^{2}=10^{2}$
 $64+81=100$

$$\frac{225}{225} = 225$$

$$right \triangle$$

The Converse of the Pythagorean Theorem

If the sum of the square of the legs of a triangle is equal to the square of the length of the third side, then the triangle is a right triangle.

. #THM

Let's explore one way to verify that the Pythagorean Theorem is true.

a. What do you notice about the area of the large square?

b. What do you notice about the area of the smaller inner square?

c. What can we say about the area of the 4 right triangles formed between the large outer square and smaller inner square?

$$a = \frac{1}{2}ab$$

d. What kind of relationship is there between the area of the large square, smaller square, and four right triangles?

$$C^2$$
 + 2ab = $(a+b)(a+b)$

$$a^2 + ab + ab + b^2$$

$$a^{2} + ab + ab + b^{2}$$

$$c^{2} + 2ab + b^{2}$$

$$-2ab$$

$$-2ab$$

$$C^2 = \alpha^2 + b^2$$

Now, we will use the similarity of right triangles to prove the Pythagorean Theorem.

Right triangle ΔDEF is shown below. A copy of ΔDEF is also shown. However, an additional segment is drawn in this figure:

- A perpendicular line segment is drawn from D to the hypotenuse \overline{FE} .
- The point where the perpendicular line segment meets the hypotenuse is labeled point G.
- The figure on the right contains 3 triangles. Name all 3:
 - The big (original) triangle:

The medium triangle:

The small triangle:

a. If $m \angle GFD = 20^{\circ}$, determine the measures of the following angles and write the angle measures in the diagram above.

$$m \angle FED = 70^{\circ}$$

$$m \angle FDG = 70^{\circ}$$
 $m \angle GDE = 20^{\circ}$

$$m \angle GDE = 2$$

- b. Explain why the above angle measures tell you that the three right triangles (the big, medium, and small triangles) are all similar to each other.
 - They all have the same I measures.

They have \cong corresponding $\angle s$.

5. Let's simplify this picture a bit, this time just focusing on the lengths of each side. We start with a right triangle with legs of length a and b and hypotenuse of length c.

If we once again drop a perpendicular line segment from the right angle to the hypotenuse, it will cut the hypotenuse into two line segments, the smaller segment with length x and the larger segment with length x.

As we saw before, this will yield 3 similar triangles: a big one, a medium one, and a small one. They have all been drawn (possibly rotated) so that the right angle is on the bottom-left.

- **a.** Use the fact that the small and big triangles are similar to complete the following proportion:
- **b.** Solve the proportion that you just wrote (solve for x).

$$\frac{x}{a} = \frac{\alpha}{\Box}$$

$$\frac{cx=a^2}{c}$$

$$X = \frac{\alpha^2}{C}$$

- **c.** Use the fact that the medium and big triangles are similar to complete the following proportion:
- **d.** Solve the proportion that you just wrote (solve for x).

$$\frac{c-x}{b} = \frac{b}{c}$$

$$c(c-x) = b \cdot b$$

$$c^2 - cx = b^2$$

$$C^{2}-CX=b$$

e. Use your answers to questions b and d (above) to set up an equation. Then, rearrange the equation to conclude that $a^2 + b^2 = c^2$.

$$\left(\frac{b^2-c^2}{-c}\right) = \left(\frac{a^2}{\alpha}\right) \cdot -\alpha$$

$$b^{2}-c^{2}=-a^{2}$$

$$-b^{2}$$

$$+c^{2}=+a^{2}+b^{2}$$

$$+1$$

$$c^2 = a^2 + b^2$$

