# Module 1c: Angles & their Measure

## Math Practice(s):

- -Use appropriate tools strategically
- -Attend to precision

## Learning Target(s):

- -Identify, define, & draw representations of geometric objects using symbolic notation.
- -Understand & apply the Angle Addition Postulate, & determine the measures of angles in a given diagram.

### Homework:

HW #3: 1c #1-9

erase to show

Angles

1. The figure to the right contains 5 rays (part of a line containing 1 endpoint and all the points on one side of the endpoint). These rays intersect at a common point forming the 5 angles that are labeled. Work with a partner to discuss the questions below and write down what you discussed.



A. Which angle is the smallest? How do you know?

**B.** Which angle is the biggest? How do you know?



C. Do any angles look to be "the same"? What do you think is meant by "the same"?

15 \$ 12, they appear to have the same measurement.

An angle is formed by two rays that share a \_

common

endpoint

• When two rays,  $\overrightarrow{AB}$  and  $\overrightarrow{AC}$ , share the common endpoint, A, then we can name the angle formed either  $\angle BAC$  or  $\angle CAB$ 



• The measure of an angle is indicated by \_\_\_\_\_\_.

3. Use a protractor to determine the measure of the 5 angles shown in the figure below.

A. 
$$m \angle 1 = 118$$

B. 
$$m \angle 2 = 62$$

C. 
$$m \angle 3 = 34$$

D. 
$$m \angle 4 = 84^{\circ}$$

E. 
$$m \angle 5 = 6$$



erase to show

Two angles are **congruent** if they have the same angle measure.

- For example, if  $m \angle BAC = m \angle DEF$ , then  $\angle BAC$  is congruent to  $\angle DEF$
- Using symbols, we can write this relationship as  $\angle BAC \cong \angle DEF$



Are there any congruent angles in the diagram above?

Since 
$$m \angle 2 = m \angle 5$$
,  $\angle 2 \cong \angle 5$ .

**4.** Working with a partner, in your own words write a definition of each type of angle listed in the table. Then, draw 2 different examples of each type of angle.

|                | Definition                                            | Two Examples |
|----------------|-------------------------------------------------------|--------------|
| Right Angle    | An angle = to 90°                                     |              |
| Acute Angle    | An angle<br>smaller than<br>90°                       |              |
| Obtuse Angle   | An angle larger<br>than 90°, but<br>smaller than 180° |              |
| Straight Angle | an angle = to 180°                                    |              |

erase to show

#### Adjacent Angles and the Angle Addition Postulate

The exact measurements for the diagram are:

A. 
$$m \angle 1 = 118^\circ$$

**B.** 
$$m \angle 2 = 62^{\circ}$$

C. 
$$m \angle 3 = 36^{\circ}$$

**D.** 
$$m \angle 4 = 82^{\circ}$$

E. 
$$m \angle 5 = 62^{\circ}$$



Adjacent Angles are angles who share a common vertex and side

List all pairs of adjacent angles.

 4
 4
 4
 4
 4
 3
 4
 3
 4
 3
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 5
 4
 6
 6
 6
 6
 6
 7
 6
 7
 6
 7
 6
 7
 6
 7
 7
 6
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7

erase to show

The Angle Addition Postulate says that if  $\angle DEF$  and  $\angle FEG$  are adjacent angles, then

 $m \angle DEF + m \angle FEG = m \angle DEG$ .

• In other words, the measures of \_\_\_\_\_ adjacent \_\_\_\_ angles have a sum that is equal to the measure of the \_\_\_\_\_ bigger \_\_\_\_ angle \_\_\_\_ they create.



5. Use the following angles to answer the below questions about angle measures.

A. If  $m \angle ABC = 79.3^{\circ}$  and  $m \angle CBD = 27.6^{\circ}$ , what is  $m \angle ABD$ ?

$$m\angle ABD$$
?  
 $m\angle ABC + m\angle CBD = m\angle ABD$   
 $79.3 + 27.6 = m\angle ABD$ 

m LABD = 106.9°



**B.** If  $m \angle ABC = 69.5^{\circ}$  and  $m \angle ABD = 120^{\circ}$ , what is  $m \angle CBD$ ?

 $m\angle ABC+m\angle CBD=m\angle ABD$   $69.5+m\angle CBD=120$  $m\angle CBD=50.5^{\circ}$ 

C. If  $m \angle ABC = 2x$ ,  $m \angle CBD = x$ , and  $m \angle ABD = 99$ , what is  $m \angle ABC$  and  $m \angle CBD$ ?

m L ABC+m L CBD = m LABD

$$2x + x = 99$$

$$X=33$$

MLABC=2X MLCBD=X

mLABC=66°

Write the definition for each the following and draw a diagram (including angle measures) that represents your definition.

erase to show

|                      | Definition                                                  | Example                           |
|----------------------|-------------------------------------------------------------|-----------------------------------|
| Complementary Angles | 2 angles whose sum is 90°                                   | adj.comp.                         |
| Supplementary Angles |                                                             | adj. supp.  > linear pair         |
| Perpendicular Lines  | 2 lines that intersect to form right \( \sum_{\subset} s \) | S B P SP                          |
| Angle Bisector       | A segment that divides an angle into two                    | G P LP bisects LGLS<br>LGLP= LPLS |
|                      |                                                             |                                   |

7. Identify a relationship between the given angles, if any. Then, find the value of the variable.







mLGKJ+mLHKJ=180

$$3x+6+48=90$$

$$\frac{3x=36}{3}$$

$$3x+6+48=90$$
  $mLPTQ+mLQTR+mLRTS=180$   $5x+11+x-2+3x+7=180$ 

$$5x+4+x-2+3x+7=180$$

$$9x+9=180$$

$$\frac{9}{9} = \frac{17}{9}$$

#### **Practice**

In the diagram to the right,  $\overline{GE}$  and  $\overline{BI}$  are perpendicular to each other,  $m \angle ACB = 65^{\circ}$ and  $m \angle FDH = 155^{\circ}$ . Determine the following angle measures.

E. 
$$m \angle BHD = 90^{\circ}$$
 GE IBI



**G.** In the diagram above, draw  $\overline{HF}$ . If  $m \angle FHI$  is four times larger than  $m \angle FHD$ , what is  $m \angle FHI$ ? Show or explain how you determined your answer.

(MLFHD) 4= MLFHI MLDHI=90°

$$x + 4x = 90$$

H. Identify three pairs of adjacent angles.

answers vary (here are a tew)

MAFHI=72

**I.** Name the angle in the diagram that is adjacent and supplementary to  $\angle ACH$ .

**J.** Name the angle in the diagram that is congruent, but NOT adjacent to  $\angle GHI$ .