Module 16c: Volumes of Pyramids & Cones

Math Practice(s):

- -Model with mathematics.
- -Look for & make use of structure.

Learning Target(s):

 Apply the formulas for volume to solve problems in real-world context.

Homework:

HW#10: 16c #1-5

(erase to show)

Warm-up:

1. If we cut out the figure on the left (a two-dimensional object, comprised of a square with an isosceles triangle on each side), then fold the triangles upward along the dashed lines, you would

end up with the figure on the right: a pyramid with a square base (known as a Square

The Great Pyramid of Giza in Egypt, is a pyramid with a square base where each side of the base has a length of 755 ft., and the two legs of each triangle have a length of 670 ft. Determine the surface area of the Great Pyramid of Giza.

Example 1: Find the volume of a square pyramid with the given dimensions. Express your answer in exact form and as a decimal rounded to the nearest hundredths place.

a) base length of 3 in. and a pyramid height of 7 in.

$$V = \frac{1}{3}(9)(7)$$
 $B = 3.3$
 $V = \frac{1}{3}(63)$ $V = 9$
 $V = 21 \text{ in}^3$

$$B=3.3$$

$$=9$$

Example 2: Find the volume of the cone with the given dimensions. Express your answer in exact form and as a decimal rounded to the nearest hundredths place.

Example 3: A hexagonal prism and a hexagonal pyramid are shown below.

- The base of both figures are congruent hexagons with an area of 75 square feet.
- The height of both figures is the same length.

A. If the height of both figures is 12 feet, determine the volume of both figures.

$$V_{prism} = Bh$$

= 75(12)
 $V = 900 \text{ ft}^3$

$$V_{pyranid} = \frac{1}{3}(900)$$

B. Determine the height of the hexagonal prism if its volume is 225 cubic feet. Set-up and solve an equation to show how you determined your answer.

$$V=Bh$$
225=75h
75
75
 $h=3f+$

C. Determine the height of the hexagonal pyramid if its volume is 250 cubic feet. Set-up and solve an equation to show how you determined your answer.

$$250 = \frac{1}{3}(75) \text{ h}$$

$$250 = 25 \text{ h}$$

$$25 = 25$$

Practice:

Grandma's birthday is in a few weeks and we would like to buy her a new fish tank for her pet fish, Ramsey and Karyl. Ramsey and Karyl like a lot of water to swim in, and therefore Grandma needs a sufficiently large fish tank. There are two tanks available, and we want to purchase the one that holds the most water. The first tank is a cylinder with diameter 12 cm and height 30 cm. The second tank is a cone with base diameter 18 cm and height 35 cm.

1. Which tank should we purchase?

Cylinder

V=Bh

B=TT(
$$\omega$$
)²
 $=\frac{1}{3}Bh$
 $=(3\omega\pi)(30)=3\omega\pi$
 $=\frac{1}{3}(81\pi)$
 $=1080 \, \text{Tr} \, \text{cm}^3$

Live should purchase

$$\frac{\text{Cone}}{V = \frac{1}{3}Bh} B = \pi(9)^{2}$$

$$= \frac{1}{3}(81\pi)(35) = 81\pi$$

$$= 945\pi \text{ cm}^{3}$$

We should purchase the cylindrical tank.

2. How much more water does the larger tank hold than the smaller tank?

The larger tank holds about 424 cm³ more water.

3. Suppose the diameter of each tank decreases by 2 cm. Which tank would then hold the most water?

Cylinder

$$d=10cm, r=5cm$$

 $h=30cm$
 $V=(25\pi)(30)$
 $V=(25\pi)(30)$

Cone

$$d=16cm, r=8cm$$

 $h=35cm, B=\pi(8)^2$
 $V=\frac{1}{3}(64\pi)(35)=64\pi$
 $=\frac{2240}{3}\pi cm^3$
 $\approx 2345.7 cm^3$

The cylindrical tank would still hold more water.