Module 15c: Inscribed & Circumscribed Angles

Math Practice(s):

- -Construct viable arguments & critique the reasoning of others.
- -Look for & make use of structure.

Learning Target(s):

- Discover & apply the relationship between
 - + an inscribed angle & its intercepted arc
 - + a circumscribed angle & its intercepted arc

Homework:

HW#5: 15c #1-6

Warm-up

1. Sketch below the circle defined by $(x-3)^2 + (y-6)^2 = 25$, and label its center point C.

center: (3,6)

radius: 125 = 5units

2. Using the equation for the circle you graphed above to verify that the point (8, 6) lies on the circle.

 $(x-3)^2+(y-6)^2=25$

$$(5)^2 + (0)^2 = 25$$

25 = 25 \checkmark

3. Using the equation for the circle you graphed above to verify that the point (7, 9) lies on the circle.

 $(7-3)^2+(9-6)^2=25$

$$(4)^2 + (3)^2 = 25$$

(erase to show)

An angle whose ___vertex

On the circle and whose rays contain

chords of the circle.
In scribed angle / MLN, intercepts arc, MW.

The Inscribed Angle Theorem (#THM)

The measure of the inscribed angle is

half the measure of the

intercepted arc

m LMLN = ½ m MN

m MN = OR · m LMLN

Example 1: Find the value of the variable.

a)

 $x = \frac{1}{2}(86)$

b)

c)

X=2(45) $-2\cdot(5x)=9x+8$ $x=90^{\circ}$ ox $5x=\frac{1}{2}(9x+8)$ > 10x=9x+8

Example 3: Find the value of the variable.

$$0 = 2(65)$$

Example 4:

 \overline{GD} and \overline{GS} are tangent to circle R $m \angle DCS = 46^{\circ}$

$$mDS = 92^{\circ}$$

