\qquad
\qquad

Quadratic Functions:

1. What is the vertex of $f(x)=(x+3)^{2}-2$ and which way does it open?
2. Given the function $f(x)=-3 x^{2}+12 x-8$

Part A: State the vertex
Part B: Graph $f(x)$. Be sure to find enough points to draw an adequate graph. Label the axes and scales used to construct the graph.

Solve using any method:

3. $6 x^{2}-2=142$
4. $(k-1)^{2}+7=-43$
5. $25 v^{2}-30 v=-9$
6. $9 x^{2}+11 x=-5$
7. $3 x^{2}-4 x=x^{2}+30$
8. While playing a game of baseball, a ball is thrown. The height of the ball can be modeled by the function $h(t)=-16 t^{2}+24 t+5$, where $h(t)$ is the height of the ball, in feet, above the ground and t is the time in seconds after the ball was thrown.

Part A: How long was the ball in the air when it reached its maximum height?
Part B: What was the maximum height of the ball?

Part C: What was the initial height of the ball?
Part D: If the ball is caught at a height of 3 feet above the ground, how long was it in the air? Show or explain your work. Round to 3 decimal places.
Part E: If the ball is not caught, how long would it take for it to hit the ground? Show or explain your work. Round to 3 decimal places.
9. A rock is thrown from the top of a tall building. The distance, in feet, between the rock and the ground t seconds after it is thrown is given by $d=-16 t^{2}-2 t+325$. How long after the ball is thrown is it 320 feet from the ground?
10. The equation $f(x)=-(x-4)^{2}+5$ represents $\boldsymbol{f}(\boldsymbol{x})$ and the graph below represents $\boldsymbol{g}(\boldsymbol{x})$.

Select whether each statement is true or false about the given functions.

Statement	True	False
A) The line of symmetry of $g(x)$ is $x=-5$		
B) The maximum of $g(x)$ is less than the maximum of $f(x)$.		
C) The value of x when $f(x)$ is at the maximum is less than the value of x when $g(x)$ is at the maximum.		
D) The y-intercept of $g(x)$ is greater than the y-intercept of $f(x)$.		

11. Identify the solution for $2 x^{2}-x-3>0$ and state your answer in any of the three standard forms. (Hint: Graph it first.)
12. If $f(x)=-2 x^{2}+4 x+3$ and $g(x)=2 x-1$ are the graphs given below, state the solutions for
A) $f(x)=g(x)$
В) $f(x) \leq g(x)$

Polynomial Functions:

13. Add $\left(3 b^{5}-4 b^{3}-2\right)+\left(7 b^{5}-b+5\right)$
14. Subtract $\left(-7 x^{3}-4 x\right)-\left(-3 x+5-2 x^{3}\right)$
15. Factor completely: $2 x^{5}+6 x^{4}-8 x^{3}$

In 16-18, divide:
16. $\left(n^{3}+125\right) \div(n+5)$
17. $\left(6 x^{3}-44 x^{2}+16 x-11\right) \div(x-7)$
18. $\left(3 x^{3}-14 x^{2}+16 x-3\right) \div(x-3)$

In 19-21, find all the zeros and the y-intercept, then graph the function on graph paper.
19. $f(x)=-(x-3)(x-2)(x+1)(x+5)$
20. $g(x)=3(x+4)^{2}(x-1)^{3}$
21. $h(x)=-4 x(x+7)(x-2)(x+3)^{2}$

In 22-25, given the information, rewrite the function in factored form, find all the zeros and the y intercept, then graph the function on graph paper.
22. $f(x)=x^{3}-5 x^{2}+8 x-4$; one factor is $(x-2)$.
23. $g(x)=2 x^{3}-4 x+2 ; x=1$ is a zero.
24. $h(x)=2 x^{3}+x^{2}-6 x-3$; one factor is $(2 x+1)$
25. $h(x)=x^{4}-x^{3}-12 x^{2}-4 x+16$; two factors are $(x+2) \&(x-1)$.
26. Based on what you know about end behavior, which function is best represented by this graph:

A. $f(x)=-8 x^{6}$
B. $f(x)=-8 x^{3}$
C. $f(x)=8 x^{6}$
D. $f(x)=8 x^{3}$
27. The function $g(x)$ is graphed below. Which could be the degree of $g(x)$?

A. first
B. second
C. third
D. fourth

Write a possible symbolic representation for the graph shown below:

28.

Write a possible symbolic representation for each of the graphs shown below:
29.

30.

31.

In 32 \& 33, determine the solution and represent your solution in any of the three standard notations (complete sentence, set, or interval).
32. $-(x-3)(x-2)(x+1)(x+5)<0$
33. $(x-4)(x+6)(x-1) \geq 0$
34. The graph below shows the cubic functions $f(x)$ and $g(x)$.
a) State the solution for $f(x)=g(x)$
b) State the solution for $f(x) \geq g(x)$
c) State the solution for $f(x)<g(x)$

