Polynomials 6c-Classifying the Zeros of a Polynomial Functions

Standards: A-APR.2, A-APR.3, F-IF.7c, N-CN. 9

Learning Target(s):

How many zeros does a polynomial have?
How can we find all the exact zeros given a graph?

The Fundamental Theorem of Algebra

states that every nth degree polynomial has

exactly n zeros.

- In some cases, a zero of a polynomial may be repeated. For example, the function
$f(x)=(x+1)(x-3)(x-3$ has three zeros: $\mathrm{x}=1,3, \& 3$
$>$ In this case, we say, " $\mathrm{f}(\mathrm{x})$ has zeros at $\mathrm{x}=1$ and $\mathrm{x}=3$ (multiplicity 2)."
- This means that instead of crossing the x-axis at $x=3$, the graph of $f(x)$ will have a "point of tangency" at $\mathrm{x}=3$.
- If a polynomial has complex zeros, they will always happen in pairs.
$>$ If $a+b i$ is a zero of the function, then $a-b i$
will also be a zero of that function. These are called "complex conjugates."
$>$ For example, the function $g(x)=x^{2}-6 x+13$ has two complex zeros: $3+2 i \& 3-2 i$.

Example 1:

The graph of $\mathbf{P}(\mathbf{x})$ is shown below. $\mathbf{P}(\mathbf{x})$ is a 3 rd degree polynomial (a "cubic" function). The scale used on the x-axis is 1 unit. The scale used on the y-axis is 2 units. Write the symbolic representation of $\mathbf{P}(\mathbf{x})$.

zeros: $-4,-2,1$
$(x+4)(x+2)(x-1)$
$(0+4)(0+2)(0-1)$
$(4)(2)(-1)$
(-8)

$$
P(x)=(x+4)(x+2)(x-1)
$$

Example 2:

The graph of $\mathbf{R}(\mathbf{x})$ is shown below. $\mathbf{R}(\mathbf{x})$ is a 3rd degree polynomial (a "cubic" function). The scale used on the x-axis is 1 unit. The scale used on the y-axis is 2 units. Write the symbolic representation of $\mathbf{R}(\mathbf{x})$.

* Example 3:

4 zeros
The graph of $\mathbf{C (x)}$ is shown below. $\mathbf{C (} \mathbf{x})$ is a 4 th degree polynomial (a "quartic" function). The scale used on the x-axis is 1 unit. The scale used on the y-axis is 2 units. Write the symbolic representation of $\mathbf{C (x)}$.
zeros: $-1,2_{k} 4$ bounce

$$
\begin{gathered}
(x+1)(x-2)^{2}(x-4) \\
(0+1)(0-2)^{2}(0-4) \\
(1)(-2)^{2}(-4) \\
(1)(4)(-4) \\
(-16) \xrightarrow[a=-1]{\longrightarrow} 16 \\
\frac{C(x)=-1(x+1)(x-2)^{2}(x-4)}{-1(x)(x)(x)(x)} \\
-1 x^{4} \\
6)^{2}
\end{gathered}
$$

Example 4:

The graph of $k(x)=x^{3}-3 x^{2}-5 x+39$ is shown below. $\mathbf{k}(\mathbf{x})$ is a 3 rd degree polynomial (a "cubic" function). The scale/used on the x-axis is 1 unit. The scale used on the y-axis is 10 units.
Determine all the zeros of $\mathbf{k}(\mathbf{x})$.
3 zeros
$x + 3 \longdiv { x ^ { 3 } - 3 x ^ { 2 } - 5 x + 3 9 }$

$$
\begin{aligned}
& K(x)=(x+3)\left(x^{2}-6 x+13\right) \quad \text { zeros: } \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c} \quad \begin{array}{l}
a, 1 \\
2 a \\
b=-6 \\
=13
\end{array}}{2 a} \\
& x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(13)}}{2(1)} \\
& x=\frac{6 \pm \sqrt{36-52}}{2} \\
& x=\frac{6 \pm \sqrt{-16}}{2} \\
& x=\frac{6 \pm 4 i}{2} \\
& x=\frac{6}{2} \pm \frac{4}{2} i \\
& x=3 \pm 2 i
\end{aligned}
$$

Example 5:
The graph of $\mathbf{L}(\mathbf{x})$ is shown below. $\mathbf{L}(\mathbf{x})$ is a 7 th degree polynomial.

- $\mathbf{L (x)}$ has two complex zeros. One of the complex zeros is $x=3 i$. \& $-3 i$
- The scale used on the x-axis is $1 / 2$ unit. The scale used on the y-axis is 500 units.

Write the symbolic representation of $\mathbf{L}(\mathbf{x})$ and determine all the zeros.

Practice:

For each of the following functions:

- First, use the symbolic representation of $\mathbf{f}(\mathbf{x})$ to determine the degree, the total number of zeros the function will have, the y-intercept, and the endbehavior directions;
- Second, use the graph of $\mathbf{f}(\mathbf{x})$ to determine the number of Real zeros and the number of Complex zeros;
- Third, use the given zero and polynomial long division to determine all remaining zeros of $f(\mathbf{x})$;
- Finally, express $f(\mathbf{x})$ in factored form.

6. $f(x)=x^{3}+2 x^{2}-11 x-12$ has one zero at $x=4$ Using the symbolic representation of $f(x)$:
A. Degree of $f(x)$: \qquad B. $f(x)$ will have a total of zeros.
C. y-int of $f(x)$: \qquad D. End-behavior:

Using the graph of $f(x)$ - note: the scale used on each axis is not provided
E. \# of Real zeros: \qquad F. \# of Complex zeros: \qquad
G. All zeros of $f(x)$:
H. $f(x)$ expressed in factored form: \qquad

7. $f(x)=x^{3}-5 x^{2}+17 x-13$ has one zero at $x=1$ Using the symbolic representation of $\mathrm{f}(\mathrm{x})$:
A. Degree of $f(x)$: \qquad B. $f(x)$ will have a total of zeros.
C. y-int of $f(x)$:
D. End-behavior:

Using the graph of $\mathbf{f}(\mathbf{x})$ - note: the scale used on each axis is not provided
E. \# of Real zeros: \qquad F. \# of Complex zeros: \qquad
G. All zeros of $f(x)$:
H. $f(x)$ expressed in factored form: \qquad

8. $f(x)=x^{4}+x^{3}-2 x^{2}+4 x-24$ has one zero at $\mathrm{x}=2$ and one zero at $x=-3$
Using the symbolic representation of $f(x)$:
A. Degree of $f(x)$: \qquad B. $f(x)$ will have a total of
C. y-int of $f(x)$: \qquad D. End-behavior: zeros.

Using the graph of $\mathbf{f}(\mathbf{x})$ - note: the scale used on each axis is not provided
E. \# of Real zeros: \qquad F. \# of Complex zeros: \qquad
G. All zeros of $f(x)$:
H. $f(x)$ expressed in factored form: \qquad

9. $f(x)=x^{4}-2 x^{3}+10 x^{2}-18 x+9$

Using the symbolic representation of $f(x)$:
A. Degree of $f(x)$: \qquad 4
B. $f(x)$ will have a total of \qquad 4 zeros.
C. y-int of $f(x):(0,9)$
D. End-behavior:
て ヲ

Using the graph of $f(x)$ - note: the scale used on each axis is not provided
E. \# of Real zeros: 2 F. \# of Complex zeros: \qquad
G. All zeros of $f(x): 1,3 i,-3 i$
H. $f(x)$ expressed in factored form: $f(x)=(x-1)^{2}\left(x^{2}+9\right)$

$$
\begin{aligned}
& \underline { x } - 1 \longdiv { x ^ { 3 } - 1 x ^ { 2 } + 9 x - 9 } \\
& \frac{+\left(-x^{4}+x^{3}\right)}{-1 x)^{3}+10 x^{2}-18 x+9} \\
& \frac{+\left(+1 x^{3}+1 x^{2}\right)}{9 x^{2}-18 x+9} \\
& \frac{+(+9 x+9)}{0} \\
& x - 1 \longdiv { x ^ { 2 } + 9 } x ^ { 3 } - x ^ { 2 } + 9 x - 9 \\
& f(x)=x^{4}-2 x^{3}+10 x^{2}-18 x+9 \\
& f(x)=(x-1)\left(x^{3}-x^{2}+9 x-9\right) \\
& f(x)=(x-1)(x-1)\left(x^{2}+9\right) \\
& x-1=0 \quad x-1=0 \quad x^{2}+9=0 \\
& x=1, \quad x=1, \sqrt{x^{2}}=\sqrt{-9} \\
& x= \pm 3 i
\end{aligned}
$$

10. $f(x)=x^{3}-3 x^{2}-3 x+1$

Using the symbolic representation of $f(x)$:
A. Degree of $f(x)$: \qquad B. $f(x)$ will have a total of
C. y-int of $f(x)$: \qquad D. End-behavior:
\qquad zeros.

Using the graph of $\mathbf{f}(\mathbf{x})$ - note: the scale used on each axis is not provided
E. \# of Real zeros: \qquad F. \# of Complex zeros: \qquad
G. All zeros of $f(x)$:
H. $f(x)$ expressed in factored form: \qquad

