Module 13d: Trapezoids

Math Practice(s):

- -Model with mathematics.
- -Attend to precision.

Learning Target(s):

-Derive & apply the formula for the area of trapezoids.

Homework:

HW#17: 13d #1-4

Warm-up

- 1. In rectangle ABCD (shown to the right), AC = 8 and AB = 15.
- A. Determine the lengths of both diagonals of rectangle ABCD.

$$8^{2}+15^{2}=c^{2}$$

$$BC=17units$$

$$DA=17units$$

B. Determine the $m \angle ACB$.

$$tan^{-1}\left(\frac{15}{8}\right) = m\angle ACB$$

C. Determine the $m \angle DCB$ and $m \angle DBC$.

$$62+mLDCB=90^{\circ}$$
 $mLDCB=28^{\circ}$

D. Determine the area of $\triangle BCD$ and the area of rectangle ABCD.

E. If rectangle ABCD was dilated about point D by scale factor of $\frac{1}{2}$, what would be the area of the resulting rectangle?

Areas

Copy and rotate trapezoid ABCD above to create a familiar shape. What shape does this combined figure make?

A Parallelogram...

How can we use the above combination to find the formula for the area of a trapezoid? $\frac{1}{2}h\left(DC+AB\right)$

Example 1: Find the area of trapezoid ABCD. Write your answer in both simplest radical form and a decimal rounded to the nearest tenths place.

$$A = \frac{1}{2}(7)(10+15)$$

$$= 3.5 (25)$$

$$= 87.5 \text{ units}^{2}$$

then this place.
$$b_1 = 10$$

$$b_2 = 15$$

$$A$$

$$b_3 = 15$$

Practice

1. Determine the perimeter AND the area of each of the following figures.

A. 21 6 13 13

B. P = 65+50+35+40 P = 190 units $A = \frac{1}{2}(40)(65+35)$ A = 20(100)

P=21+13+11+13

 $A = \frac{1}{2}(12)(21+11)$

A = 6(32)

 $A = 192 \text{ units}^2$

C. In ΔRLC , RL = 25 cm, RD = 15 cm, DC = 48 cm.

P=25+15+48+52 202+482=LC2

P=140cm

A= 63(20) =

 $A = 630 \text{ cm}^2$

LC=52cm

2. If the trapezoid to the right has an area of 25 cm.², what could its dimensions possibly be? Label the dimensions of the figure so that it has an area of 25 cm.²

$$25 = \frac{1}{2} h(b_1 + b_2)$$

$$50 = h(b_1 + b_2)$$

