Module 13c: Rectangles

Math Practice(s):

- -Model with mathematics.
- -Attend to precision.

Learning Target(s):

- -Prove & apply properties of special parallelograms.
- -Derive & apply the formulas for the area of parallelograms.

Homework:

HW#16: 13c #1-7

Warm-up

1. State the formula for determining the area of a triangle.

$$A = \frac{1}{2}bh = \frac{bh}{2}$$

- 2. $\triangle BCD$ is shown to the right.
 - A. If DC = 12 inches and the height from vertex B to \overline{DC} is 4 inches, what is the area of ΔBCD .

$$A = \frac{4(12)}{2}$$

$$A = 24 \text{ in}^2$$

- **B.** Create parallelogram DBD'C by creating a copy of ΔBCD :
 - Rotate ΔBCD in the clockwise direction 180°.
 - Then, connect the two triangles together by laying \overline{BC} directly on top of the copy of itself to create parallelogram DBD'C.
 - Draw parallelogram DBD'C so that it perfectly overlaps ΔBCD in the diagram above.
- C. Using your answer to question A (above), determine the area of parallelogram DBD'C.

D. Use the formula for the area of triangle to state the formula for the area of a parallelogram.

$$A = 2 \cdot \frac{1}{2}bh$$

- Parallelogram RDBC shown to the right.
 - **A.** If DB = 15, BC = 45, and DL = 12, what is the area of parallelogram RDBC?

A=12.45

B. Use the same dimensions given in question A (above), to determine the area of $\triangle BCD$

C. If the area of parallelogram RDBC is 100 ft.², state three possible pairs of measurements for its base and height.

$$BC = 50 ff$$

•
$$BC = 50 \text{ ft}$$
 and $DL = 2 \text{ ft}$; or,

•
$$BC = 5$$

•
$$BC = 5$$
 and $DL = 20$; or,

•
$$BC = 25 \text{ ft}$$
 and $DL = 4 \text{ ft}$

and
$$DL = 4$$

Example 1:

A. Analyze how the quadrilateral ABCD is made up of two

Rotate DABC 180° about the midpoint BC.

B. How do we know $\angle ABD \& \angle ACD$ are right angles?

Since the acute Ls in each \triangle are amplementary, & LABC= LDCB & ZACB=L LABD & LACD on 90°.

C. Using the fact that $m \angle A = 90^{\circ}$ and $m \angle ABD = 90^{\circ}$, argue that \overline{AC} and \overline{BD} are parallel line segments? Using the fact that $m \angle A = 90^{\circ}$ and $m \angle ACD = 90^{\circ}$, argue that \overline{AB} and \overline{CD} are parallel line segments?

LAZLABD are ss int Ls & they are supplemen

then AC | BD.

LASLACD are ssint Los they are supp., SO AB CD.

		erase to show
RECTANGLE A parallelogram with 4 right Opposite sides areparallel = congruent Measure of all four angles is The DIAGONALS are congruent and bisect each other. The formula for determining its area is		
$\nabla HRC = \nabla C DH$		BABC ACDA

Practice

In each rectangle, state the relationship between the given parts, then find the value of x.

(in rect. all Ls are rt Ls)

$$31x-3=90$$

$$X=3$$

4. The diagonals of rectangle DEFG intersect at M. MD = 17 cm & FD = 33x + 1. Solve for x, then find the length of each diagonal.

5

(diag. bisect each other)

17 + 17 = 33x+1