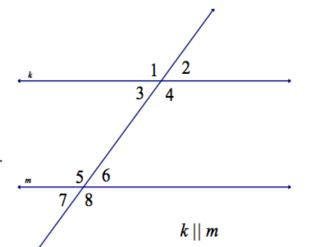
Module 13a: Parallelograms

Math Practice(s):

- -Model with mathematics.
- -Attend to precision.

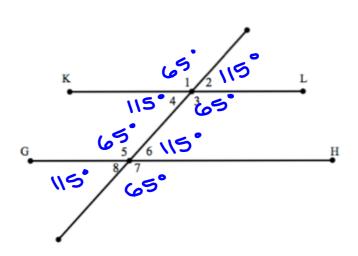
Learning Target(s):

-Investigate & discover properties of parallelograms.

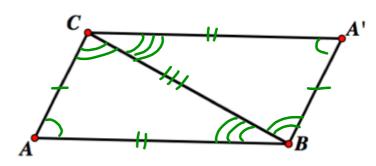

Homework:

HW#14: 13a #1-4

Warm-up


erase to show

- 1. In the diagram shown below, $k \parallel m$. Fill in the blanks to make each statement true.
 - A. $\angle 8$ and $\underline{\angle 4}$ are corresponding angles.
 - **B.** $\angle 5$ and $\underline{\angle 1}$ are corresponding angles.
 - C. $\angle 3$ and $\underline{\angle 6}$ are alternate-interior angles.
 - **D.** $\angle 5$ and $\underline{\angle 4}$ are alternate-interior angles.
 - E. $\angle 5$ and $\angle 3$ are same-side interior angles.
 - F. $\angle 5$ and $\angle 8$ are vertical angles.
 - G. $\angle 2$ and $\angle 3$ are vertical angles.
 - **H.** If $m \angle 1 = 130^\circ$, then $m \angle 8 = \underline{130^\circ}$.


2. In the diagram below, $\overline{KL} \parallel \overline{GH}$ and $m \angle 4 = 7x + 45$ and $m \angle 5 = 3x + 35$. Set up and solve an equation to determine the value of x. Then, in the diagram, state the measure of all 8 angles.

$$7x+45+3x+35=180$$
 $10x+80=180$
 $10x=100$
 $10x=100$

Example 1:

A. Work with a partner to analyze how the quadrilateral ACA'B is made up of two congruent triangles. Then, mark all sides and angles in the quadrilateral that must be congruent.

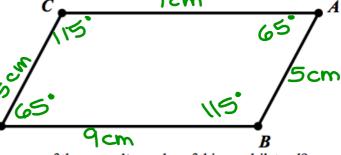
△ ABC = △A'CB

B. Determine the following measures if AB = 9 cm, AC = 5 cm, $m \angle A = 65^{\circ}$, and $m \angle ACB = 87^{\circ}$.

$$m \angle ABC = 28^{\circ}$$

$$m \angle A' = 65$$

$$m \angle A'BC = 87$$


$$m \angle A'CB = 28$$

$$cA' = 9cm$$

$$BA' = 5 cm$$

C. Now we are going to consider the same quadrilateral, but without showing the diagonal:

Using the information given and your answers in question B (above), label the measure of all 4 sides and all 4 angles of this quadrilateral.

D. What appears to be true about the measures of the **opposite** angles of this quadrilateral?

Opposite Ls appear to be 2.

E. What appears to be true about the measures of the CONSECUTIVE angles of this quadrilateral (for example, compare $m \angle A$ with $m \angle C$, or compare $m \angle B$ with $m \angle A'$)?

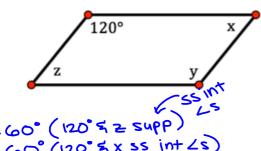
Consecutive Ls appear supplementary.

F. There are TWO conclusions we can make about the relationship between the **opposite** sides of this quadrilateral. Write two statements about the relationship between the **opposite** sides of this quadrilateral.

Opposite sides appear to be = 1.

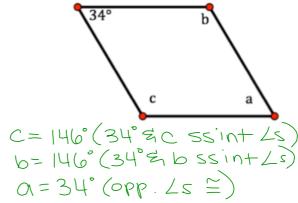
erase to show

Parallelogram (#VOC)


A quadrilateral that has 2 pairs of ______ sides.

Practice

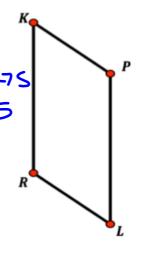
1. For each of the following parallelograms, each variable represents the measure of the angle.


Determine the value of each variable.

A.

Z=60° (120° \(\frac{120}{120} \) \(\frac{1

В.



2. In parallelogram KPLR, $m \angle P = 7x - 75$ and $m \angle R = 3x + 45$. Set-up and solve an equation, then use your solution to determine the measure of all four angles of the parallelogram.

$$m \angle P = m \angle P \quad (opp. \angle S \cong)$$
 $7x - 75 = 3x + 45$
 $-3x + 75 = 3x + 75$
 $4x = 120 = 2$

x = 30

MLP=135° MLK=45° MLR=135° MLL=45°

In parallelogram PCHS, PC = 4x + 5, CH = 3x + 1 and HS = 6x. Set-up and solve an equation, then use your solution to determine the lengths of all four sides of the parallelogram.

PC=HS (Opp. sides =)

$$CH = \frac{3}{1}(\frac{5}{2}) + 1 \left(HS = \frac{6}{1}(\frac{5}{2}) \right)$$

$$= \frac{15}{2} + \frac{1}{1} \cdot \frac{2}{2} = \frac{30}{2}$$

$$= \frac{15}{2} + \frac{2}{2}$$

$$=\frac{15}{2}+\frac{1}{1}\cdot\frac{2}{2}=\frac{36}{2}$$

$$CH = \frac{17}{2}$$
 units = 8.5 units