Quadratics 2c - Factored Form Graph to Symbolic
 Standards: F-IF. 4 \& F-IF. 7
 GLOs: \#3 Complex Thinker
 Math Practice: Look for and make use of structure HW: WS \# 10 (graph on graph paper!)
 Learning Target:
 What points do you need to write a quadratic equation and how do you use them to do so?

In the last lesson we learned how to graph
quadratic functions that are represented symbolically in factored form. In this lesson we learn how to reverse that process - to build our own symbolic representations of the form $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{s})(\boldsymbol{x}-\boldsymbol{t})$ from the graphs.

Determining the Symbolic Form $f(x)=a(x-s)(x-t)$

1. Identify the zeros of the quadratic function, and use them to find the factors $(x-s)$ and $(x-t)$
2. Locate a third point on the graph. This can be anywhere on the graph, but sometimes it is useful to use the y-intercept.
3. Plug in the x - and y-values of the third point into the partial symbolic representation. Simplify the resulting equation to solve for a.
4. Write the complete solution in symbolic form

$$
(\underline{f(x)=a(x-s)(x-t)}) .
$$

1. Find the symbolic representation for the following quadratic function and then mark the exact coordinates of the intercepts and vertex.
(1) zeros: 24

$$
(x-2)(x-4)
$$

(2) y-int: $(0,4)$

$$
\begin{array}{cc}
f(x)=a(x-2)(x-4) & f(x)=a(x-5)(x-) \\
4=a(0-2)(0-4) & f(x)=\frac{1}{2}(x-2)(x-4) \\
4=a(-2)(-4) & \frac{\text { vertex: }}{} \\
\frac{x: \frac{2+4}{2}}{4}=\frac{6}{2}=3 \\
\frac{1}{8} \frac{a(8)}{8} & y=f(3)=\frac{1}{2}(\underline{3-2)}(\underline{3-4}) \\
a=\frac{1}{2} & f(3)=\frac{1}{2}(1)(-1) \\
& f(3)=\frac{1}{2}(-1) \\
& f(3)=-\frac{1}{2}
\end{array}
$$

2. Find the symbolic representation for the quadratic function f with zeros at $x=-1$ and $x=-3$ and y-intercept at $(0,-6)$. State the coordinates of all intercepts and the vertex Graph f below.
(1)

$$
\begin{array}{r}
\text { zeros: }-1 \text { 玄 }-3 \\
(x+1)(x+3)
\end{array}
$$

$$
\begin{aligned}
& (0,-6) \\
& x \\
& x(x)=a(x+1)(x+3) \\
& f(0) \\
& -6=a(0+1)(0+3) \\
& -6=a(1)(3) \\
& \frac{-6}{3}=\frac{a(\beta)}{3} \\
& a=-2
\end{aligned}
$$

vertex:

$$
\begin{aligned}
& x: \frac{-1+-3}{2}=\frac{-4}{2}=-2 \\
& y: f(-2)=-2(-2+1)(-2+3) \\
& f(-2)=-2(-1)(1) \\
& f(-2)=-2(-1) \\
& f(-2)=2
\end{aligned}
$$

$$
f(x)=a(x-s)(x-t)
$$

$$
f(x)=-2(x+1)(x+3)
$$

$$
x \text {-int: }(-1,0) \&(-3,0)
$$

$$
y \text {-int: }(0,-6)
$$

$$
\text { vertex: }(-2,2
$$

3. Find the symbolic representation for the quadratic function g with zeros at $x=-1$ and $x=3$ and vertex at ($1,-4$). State the coordinates of all intercepts. Graph g below.
(1) Zeros: -1 云 3

$$
(x+1)(x-3)
$$

(2) $\left(\begin{array}{l}1, \\ x\end{array}, y\right)$
$g(x)=a(x+1)(x-3)$

$-4=a(1+1)(1-3)$

$$
f(x)=a(x-5)(x-t)
$$

$\frac{-4}{-4}=\frac{a(-4)}{-4}$

$$
a=1
$$

y-int:

$$
\begin{aligned}
& g(0)=1(0+1)(0-3) \\
& g(0)=1(1)(-3) \\
& g(0)=-3
\end{aligned}
$$

