# Module 12d: Applying Triangle Congruence Theorems

# Math Practice(s):

- -Reason abstractly & quantitatively.
- -Construct viable arguments & critique the reasoning of others.

# **Learning Target(s):**

- -Use proofs to write convincing mathematical arguments.
- -Prove the perpendicular bisector thm & isosceles triangle thm.

# Homework:

HW#13: 12d #1-4

The figures below are two right triangles with  $\overline{AB} \cong \overline{DE}$  and  $\overline{BC} \cong \overline{EF}$ .

BC=EF AB =DE

- 1. Mark the diagram by placing "congruence marks" to show which parts are congruent.
- 2. What triangle congruence theorem could we try to use to prove these two triangles congruent?



SSA but SSA is not a congruence thm.

One of the key facts of right triangles is the

Pythagorean

Theorem

We can use this to solve for AC and DF.

$$ED^{2}+DF^{2}=EF^{2}$$

$$-ED^{2}$$

$$-EF^{2}-ED^{2}$$

$$AB^{2} + AC^{2} = BC^{2}$$

$$-AB^{2}$$

$$-AB^{2}$$

$$AB^{2} + AC^{2} = BC^{2}$$

$$-AB^{2}$$

$$AC^2 = BC^2 - AB^2$$
  
 $AC = \sqrt{BC^2 - AB^2}$ 

Now, by substitution, 
$$\Rightarrow$$
 how can we conclude that  $AC = DF$ ?

 $DF = \sqrt{EF^2 - ED^2}$ 
 $AB = DE$ 

we know

DF = AC

So, for right triangles, SSA can actually be turned into <u>SSS</u>, which **is** a triangle congruence theorem! What parts of the right triangle did we have to prove this?

we are given a hypotenuse & a leq.

### The HYPOTENUSE – LEG (HL) Theorem

#### Example 1:

The Perpendicular Bisector Theorem states the following:

Any point P on the perpendicular bisector of  $\overline{AB}$  is equidistant (of equal distance) to its endpoints A and B.

Prove that the *Perpendicular Bisector Theorem* is true.

Given: Point P lies on the perpendicular bisector of  $\overline{AB}$ .





|          | Br                                             |                                               |
|----------|------------------------------------------------|-----------------------------------------------|
|          | What statements can we make that must be true? | How do we know those statements must be true? |
| Part I   | Plies on I bis.                                | ·Given                                        |
|          | · <del>VM</del> = <u>BM</u>                    | · Def. of bisector                            |
|          | · PM = PM                                      | · Reflexive Prop.                             |
|          | · ZAMPSLBMP                                    | ·Def. of 1                                    |
| Part II  | · LAMP = LBMP                                  | · All rt Ls =                                 |
|          | . APMA = APMB                                  | .SAS                                          |
|          | · AP = BP                                      | ·CPCTC                                        |
| Part III | $\cdot AP = BP$                                | ·Def. of ≃                                    |

# Example 2:

The Isosceles Triangle Theorem states the following:

If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

Prove that the Isosceles Triangle Theorem is true.

Given: In  $\Delta DNB$ ,  $\overline{DN} \cong \overline{DB}$ 

Prove:  $\angle N \cong \angle B$ 



|          |                                                  | • •                                           |
|----------|--------------------------------------------------|-----------------------------------------------|
|          | What statements can we make that must be true?   | How do we know those statements must be true? |
| Part I   | · DN = DB                                        | · Given                                       |
|          | · DM is L bis. NB                                | · Converse of L<br>bisector thm               |
|          | · DM = DM                                        | · Replexive Prop.                             |
| Part II  | - LNMD 3 LBMD                                    | ·Def. of I                                    |
|          | · ANMD & ABMD  are r+ As                         | ·Def. of r+ D                                 |
|          | · \( \triangle NMD \( \triangle \triangle BMD \) | • ₩ <u></u>                                   |
|          | / N ~ 1 B                                        | · OD oT                                       |
| Part III | · ∠N ≅ LB                                        | ·CPCTC                                        |

# The Isosceles Triangle Theorem

If two sides of a triangle are  $\underline{\cong}$ , then the angles opposite those sides are  $\underline{\cong}$ .

# The CONVERSE of the Isosceles Triangle Theorem

<sub>If</sub> 2 ∠s of a ∆ are ≅

 $_{\mathrm{Then}}$  the sides opposite those  $\angle$  s are  $\cong$ 

**Example 3:** Determine the perimeter of each triangle.





#### Practice

1.  $\Delta DNB$  is an isosceles triangle with  $\overline{DN} \cong \overline{DB}$ .

A. If 
$$DN = 5x - 31$$
,  $NB = 45$  and  $DB = 34$ , determine the value of x.

$$5x-31=34$$

**B.** If  $m \angle N = x + 20$  and  $m \angle B = 90 - x$ , determine the measure of each angle of  $\triangle DNB$ .

$$X+20 = 90-X$$

C. If DN = 3x, NB = 4x + 1 and the perimeter of  $\Delta DNB$  is 151, determine the length of each side of  $\Delta DNB$ .

2. Given:  $\triangle$ KPM is isosceles,  $\overline{LP} \perp \overline{KM}$ 

Prove:  $\Delta KLP \cong \Delta MLP$ 



|          | What statements can we make that must be true? | How do we know those statements must be true? |
|----------|------------------------------------------------|-----------------------------------------------|
| Part I   | · DKbW is isosceles                            | · Given                                       |
|          | · LP TKM                                       | · Given                                       |
| Part II  | . KP = MP                                      | . Def. of Isosc. \( \Delta \)                 |
|          | · PL = PL                                      | · Reflexive Property                          |
|          | · LKLPSILMLP                                   | ·Def. of 1                                    |
|          | · OKLPS DMLP Y+ DS                             | ·Def. of 1+. D                                |
| Part III | · OKLM = DMLP                                  | ·HL                                           |

3. Given:  $\overline{FJ} \cong \overline{GH}$ ,  $\angle JFH \cong \angle GHF$ 

Prove:  $\overline{FG} \cong \overline{JH}$ 



|          | What statements can we make that must be true? | How do we know those statements must be true? |
|----------|------------------------------------------------|-----------------------------------------------|
| Part I   | · FJ = GH<br>· LJF H = LGHF                    | · Given                                       |
|          | · LJFH = LGHF                                  | ·Given                                        |
| Part II  | ·FH = HF                                       | · Reflexive Prop.                             |
|          | ·DJFH=DGHF                                     | ·SAS                                          |
| Part III | ・〒G ≃ 丁H                                       | ·CPCTC                                        |