Module 11b: Perimeter & Area of Similar Figures

Math Practice(s):

- -Model with mathematics.
- -Look for & make use of structure.

Learning Target(s):

- Explore & apply the relationship between perimeters & areas of similar figures.

Homework:

HW#8: 11b #1-6

Example 1: In the diagram below, $\overline{AB} \perp \overline{AC}$.

A. Determine the perimeter of \triangle ABC.

3+4+5 12 units

- **B.** In the coordinate plane above, dilate $\triangle ABC$ about point A, using a scale factor of 2, to create $\Delta A'B'C'$.
- C. Determine the perimeter of $\Delta A'B'C'$.

6+8+10 24 units

D. Compare the perimeter of $\triangle ABC$ to the perimeter of $\triangle A'B'C'$. What do you notice?

The perimeter of $\triangle A'B'C'$ is exactly 2 times the perimeter of DABC.

A. Determine the perimeter of $\triangle ABC$.

3+4+5

12 units

- **B.** In the coordinate plane above, **J**
 - Reflect ΔABC over the x-axis to create ΔA'B'C'.
 - Then, translate the result such that T(x, y) = (x + 1, y 3) to create $\Delta A''B''C''$.
 - Then, dilate the result about C", using a scale factor of 3, to create ΔJKL such that $\Delta JKL \sim \Delta ABC$.
- C. Determine the perimeter of ΔJKL .

12+9+15 36 units

D. Compare the perimeter of $\triangle ABC$ to the perimeter of $\triangle JKL$. What do you notice?

The perimeter of DJKL is 3 times larger than the perimeter of DABC.

Example 3: Rectangle PQRS is shown in the coordinate plane below.

- A. In the coordinate plane below,
 - Translate PQRS such that T(x, y) = (x + 1, y + 2).
 - Then, reflect the result over the y-axis.
 - Then, dilate the result about the origin, using a scale factor of $\frac{1}{2}$, to create rectangle XWYZ such that rectangle XWYZ ~ rectangle PQRS.

B. Without computing the actual perimeters, make a conjecture about how the perimeter of XWYZ will compare to PQRS.

The perimeter of XWYZ will be half the perimeter of PQRS.

 ${\bf C.}$ Compute the perimeters of XWYZ and PQRS to determine if your conjecture was accurate.

PQRS 6+4+6+4 20 units

Let M be a rigid motion transformation, D be a dilation about a point with scale factor k, and S be the similarity transformation defined as M followed by D.

If P is a polygon with perimeter p and Q = S(P), then Q has perimeter kp.

In other words, ...

The perimeter of the primage is multiplied by the scale factor to get the parimeter of the image.

Example 4: Refer back to example 1 and compare the **area** of $\Delta A'B'C'$ to the **area** of ΔABC . What do you notice?

$$A = \frac{1}{2}(4)(3)$$

$$\Delta ABC$$
 $A = \frac{1}{2}(4)(3)$
 $\Delta A'B'C'$
 $A = \frac{1}{2}(8)(6)$

$$A = 6$$
 units $A = 24$ units $A = 24$ units $A = 24$

the area of A'B'c' is 4 times the area of ABC.

Example 5: Refer back to example 2 and compare the area of ΔJKL to the area of ΔABC . What do you notice?

$$A = \frac{1}{2}(12)(9)$$

The orea of JKL is 9 times the area of ABC.

Example 6: Refer back to example 3 and compare the area of WXYZ to the area of PQRS. What do you notice?

$$A = 24 \text{ units}^2$$

$$A = 3(2)$$

$$A = 6 units^2$$

The area of WXYZ is 4 the area of PORS

Let M be a rigid motion transformation, D be a dilation about a point with scale factor k, and S be the similarity transformation defined as M followed by D.

If P is a polygon with area r and Q = S(P), then Q has area k^2r .

The area of the preimage is multiplied by the <u>square</u> of the scale factor to get the area of the image.

Example 7: Let S be a similarity transformation determined by a rigid motion transformation M followed by a dilation D about an arbitrary point with scale factor 3. Compare the area of Δ KLM below with its image S(Δ KLB).

The area of $S(\Delta KLM)$ will be 3^2 times the area of ΔKLM .

<u>A</u>KLM A=½(6)(2) A=6 units²

S(AKLM)

 $A = 6 \left(3^2\right)$

A = 6 (9)

A = 54 units2