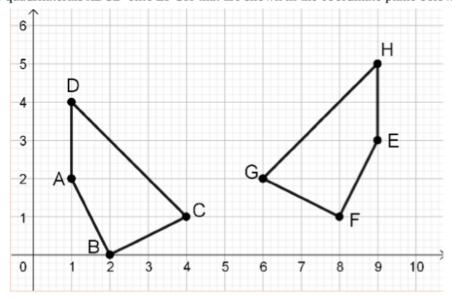
Module 11a: Rigid Motion Transformations & Similarity

Math Practice(s):

- -Model with mathematics.
- -Look for & make use of structure.

Learning Target(s):


- Define similarity in terms of similarity transformations.

Homework:

HW#8: 11a #1-2

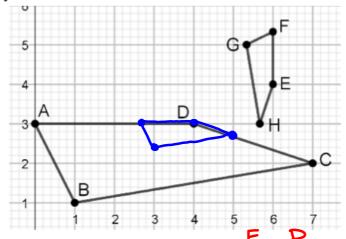
Warm-up

1. Consider quadrilaterals ABCD onto EFGH that are shown in the coordinate plane below.

- A. Define a translation T that maps point C to point G: T(x, y) = (X+2)
- **B.** Demonstrate that figure $ABCD \cong EFGH$ by defining a rigid motion transformation that begins with T (i.e., your answer for 1A above) and maps ABCD onto EFGH.

$$T(x,y) = (x+2,y+1)$$

Reflect over $x=6$


- C. Define a translation, S, that maps point A to point E: S(x, y) = (X+8)
- **D.** Demonstrate that figure $ABCD \cong EFGH$ by defining a rigid motion transformation that begins with S (i.e., your answer for 1C above) and maps ABCD onto EFGH.

$$S(x,y)=(x+8,y+1)$$

Reflect over $x=9$.

Example 1: The two quadrilaterals shown in the coordinate plane below are similar

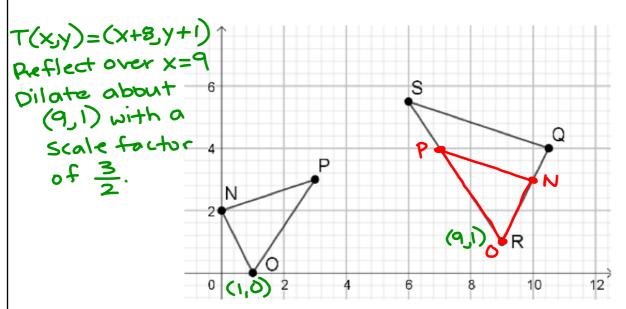
- A. Which of the following similarity statements is true?
 - MABCD ~ MEFGH
 - MABCD ~ EHGF

B. Discuss with a partner how rigid motion transformations could be used to map onto Write down the ideas that you discussed.

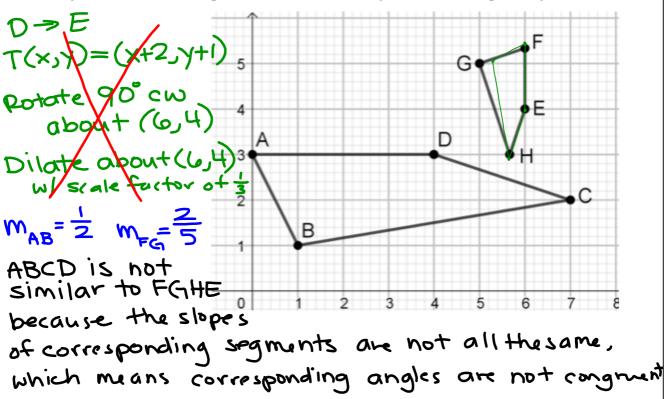
$$T(x,y) = (X-2,y-1)$$

Rotate 90° counterclockwise about (4,3)

C. Does quadrilateral ABCD seem to be a dilation of quadrilateral FGHE? If so, what is the scale factor.


The scale factor seems to be about 3.

A SIMILARITY TRANSFORMATION is a rigid motion transformation followed


by a dilation about a point.

• Object A in a plane is said to be *similar* to object B if and only if there is a **similarity transformation** that maps A onto B.

Example 2: The two triangles in the coordinate plane below are similar. Define a similarity transformation that maps Δ NOP onto Δ QRS.

Example 3: Use transformations to determine if ABCD is similar to FGHE. If they are similar, define a similarity transformation that maps ABCD onto FGHE. If they are not similar explain why not.

