Module 10d: Rigid Motion Transformations & Congruence

Math Practice(s):

- -Model with mathematics.
- -Use appropriate tools strategically.

Learning Target(s):

- Define congruence in terms of rigid motion transformations.
- Perform a specified sequence of translations, reflections, and/or rotations on various plane figures.

Homework:

HW#7: 10d #1-4

Warm-up

In the coordinate plane below, $\triangle ABC \cong \triangle A'B'C'$.

- Use patty paper to copy ΔABC and perform multiple transformations on ΔABC until it lands directly on ΔA'B'C'.
- In the table that follows, list the order of the transformations you performed and briefly describe the transformation you performed.
 - o For example, if you performed a rotation, you should state, "Rotated $\triangle ABC$ counterclockwise about point C," or, "Reflected $\triangle ABC$ about \overline{AC} ."

Answers vary. Sample below.

Transformation Performed	Description of Transformation
Translation	T(x,y) = (x+3,y+6)
Rotation	45° clockwise about (8,9)
Reflection	over X=8 (Bici)

Figure A is said to be **congruent** to Figure B if and only if there is a sequence of <u>rigid motion transformations</u> that moves Figure A onto Figure B.

Example 1:

In the coordinate plane below, $\Delta JKL \cong \Delta J'K'L'$. Create TWO different sequences of rigid transformations that moves ΔJKL onto $\Delta J'K'L'$.

Practice

- 1. Draw the image of \triangle ABC below resulting from applying the transformations T, R, and F (in that order) defined as the following:
 - T is the translation defined by T(x, y) = (x + 3, y + 2)
 - R is a rotation of 90° counterclockwise about the point (11, 7)
 - F is a reflection over line x = 11

Label the resulting image $\Delta A'B'C'$ such that $\Delta ABC \cong \Delta A'B'C'$.

2. Rotate $\triangle ABC$ 90° counterclockwise about point A, followed by the translation, T, defined by T(x, y) = (x - 2, y), and finally a reflection over the y-axis. Label the resulting image $\triangle A'B'C'$ such that $\triangle ABC \cong \triangle A'B'C'$.

3. Show that $\triangle ABC \cong \triangle A'B'C'$ by defining a sequence rigid motion transformations that moves $\triangle ABC$ to $\triangle A'B'C'$.

