1) How does $f(x)=3 x^{2}$ compare to $g(x)=2 x^{2}$

- concave up
- narrower than parent fund
- vertex at $(0,0)$
- concave up
- vertex is (0,0)
-narrower than parent fund.
- Both $f(x) \& g(x)$ are concave up.
- Both $f(x)$ in $g(x)$ have the ir vertex@ $(0,0)$.
- Both $f(x)$ \& $g(x)$ are narrower than parent
- $f(x)$ is narrower than $g(x)$. function.
- Both $f(x)$ \& $g(x)$ are parabolas.

Quadratics1b-Concavity \& Y-Intercept
 Standards: F-IF. 7

GLOs: \#3 Complex Thinker
Math Practice: -Model with mathematics
-Make sense of prblems and persevere in solving them
Learning Target: How do you determine the y-intercept of a quadratic, and what does it mean in context?
\#8HW: Quads 1b \#1-6

Y-intercept:

Understanding of what the constant term, c, tells us about the graph of a quadratic function

1) For each quadratic function below, determine the value of the function at $x=0$.
A. $f(x)=2 x^{2}+3 x-1$

$$
f(0)=2(0)^{2}+3(0)-1
$$

$$
f(0)=2(0)+0-1
$$

$$
f(0)=0+0-1
$$

$$
f(0)=-1
$$

B. $g(x)=-x^{2}+x-1$
$g(0)=-(0)^{2}+(0)-1$
$g(0)=-(0)+0-1$

C. $h(x)=\frac{1}{2} x^{2}-1$
$h(0)=\frac{1}{2}(0)^{2}-1$
$h(0)=\frac{1}{2}(0)-1$
$h(0)=0-1$
$h(0)=-1$

2) Compare each of your answers (in question 1 above) to the symbolic representation and y intercept of the graph of each function. What do you notice?

- the - 1 is always the c-value in standard form, $a x^{2}+b x+c$.
- it is always the y-intercept.
(erase to show)

For a quadratic function, $f(x)=a x^{2}+b x+c$, the value of " c " is often referred to as the "constant term" of the function.
$>f(0)=\mathbf{c}$
Therefore, the value of c tells us the y-coordinate of the y-intercept: ($\mathbf{0}, \mathbf{c}$)
3) While Jane is standing near the edge of a cliff enjoying the view of the ocean, she tosses a pebble upward, which then falls into the ocean below. The function

$$
h(t)=-16 t^{2}+45 t+125
$$

represents the height of the pebble, $\boldsymbol{h}(\boldsymbol{t})$, measured in feet, \boldsymbol{t} seconds after the pebble left her hand.
a. By simply analyzing the function, determine the y-intercept of the graph of $h(t)$.
(Note: you do not have to evaluate or graph the function.)

$$
(0,125)
$$

b. Interpret what the y-intercept means in the context of the given situation.

$$
\begin{aligned}
& \text { input } \rightarrow \text { time (in sec.) } \\
& \text { output } \rightarrow \text { height of pebble } \\
& \qquad \text { (in feet) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { At Oseconds, the height } \\
& \text { of the pebble is } 125 \mathrm{ft} \text {. } \\
& \text { (initial height) }
\end{aligned}
$$

* The initial height of the pebble was 125 ft .

4) The Lokahi Surfboard Company uses the following function to predict its, monthly profit, $\boldsymbol{P}(\boldsymbol{x})$, from selling any, number of surfboards, $x_{i} \longleftarrow$ input T output

$$
P(x)=-8 x^{2}+300 x-1500
$$

a. By simply analyzing the function, determine the y-intercept of the graph of $P(x)$.
(Note: you do not have to evaluate or graph the function.)

$$
(0,-1500)
$$

b. Interpret what the y-intercept means in the context of the given situation.
in put \rightarrow \# of surfboards
output \rightarrow monthlyprofit is $-\$ 1500$.

* The initial monthly profit is $-\$ 1500$.

5) When a baseball is hit into the air, the path that it travels takes the shape of a parabolic curve. When Patrick hit a baseball, the path of the ball could be modeled by the function

$$
f(x)=-0.0025 x^{2}+4 x+3.5
$$

where $\boldsymbol{f}(\boldsymbol{x})$ represents the height, in feet, of ball \boldsymbol{x} seconds after the ball was hit. out put input
a. By simply analyzing the function, determine the y-intercept of the graph of $f(x)$.
(Note: you do not have to evaluate or graph the function.)

$$
(0,3.5)
$$

b. Interpret what the y-intercept means in the context of the given situation.

After O seconds, the ball was 3.5 ft high. (initial height).
*The initial height of the ball is 3.5 ft

Concavity:

Of the six functions graphed below, compare the three graphs in the top row to the three graphs in the bottom row. What do you notice?
A. $f(x)=\frac{1}{2}+x-2$
B. $g(x)=3 x^{2}-2 x+\frac{1}{2} \quad$ C. $h(x)=8 x^{2}+9 x-1$

D. $p(x)=-\frac{1}{4} x^{2}+x+2$
E. $q(x)=-2 x^{2}+9 x-5$
F. $r(x)=-7 x^{2}-4 x+5$

6) For each function, place a " V " in the appropriate columns. Each row should have two " $\sqrt{ }$ ".

Function	Graph is Concave Up	Graph is Concave Down	Coefficient of $x^{2}:$ $a>0$	Coefficient of $x^{2}:$ $a<0$
$f(x)$	\checkmark		\checkmark	
$g(x)$	\checkmark		\checkmark	
$h(x)$	\checkmark		\checkmark	
$p(x)$		\checkmark		\checkmark
$q(x)$		\checkmark		\checkmark
$r(x)$		\checkmark		\checkmark

(erase to show)
Consider any quadratic function, $f(x)=a x^{2}+b x+c$, with $a \neq 0$.
$>$ The quadratic coefficient "a" determines the concavity of the graph of $f(x)$:

- If $\quad \mathbf{a}>\mathbf{0}$, then the graph of f is concave up (opens upwards).
- If $\mathbf{a}<\mathbf{0}$, then the graph of f is concave down (opens downwards).
- The closer the value of " a " is to 0 , the
wider the graph will be.
- The farther the value of "a" is from 0 , the narrower the graph will be.
$>$ The value of the constant coefficient " c " tells us the y-coordinate of the y-intercept: $\mathbf{(0 , c)}$

7) Work with a partner to label each graph with its appropriate function name: $p(x), q(x), r(x)$, or $s(x)$.

8) A quadratic function $f(x)=a x^{2}+b x+c$ will have two x-intercepts if the graph crosses the x-axis at two points.
A. For each of the functions above in question 7, place two points on each graph to show the locations of the x-intercepts. (in red)
B. However, some quadratic functions do not have any x-intercepts: their graphs will never cross the x-axis. Consider the four cases shown below. Working with a partner, circle the two cases that are guaranteed to have x-intercepts, and place an asterisk, " * " next to the two cases that MAY NOT have x-intercepts.
\& Case 1: $a>0$ and $c>0$ case 2. $a>0$ and $c<0$ *ese 3: $a<0$ and $c<0 \quad$ case 4. $a<0$ and $c>0$市
