

## <u>Quadratics1b - Concavity & Y-Intercept</u>

## Standards: F-IF.7

GLOs: #3 Complex Thinker

Math Practice: -Model with mathematics -Make sense of prblems and persevere in solving them

**Learning Target:** How do you determine the y-intercept of a quadratic, and what does it mean in context?

**<u>\*8HW:</u>** Quads 1b #1-6





## 09Quad1b-Concavity&Yintercept Notes.notebook



Aug 27-1:58 PM

## <u>Concavity:</u>

Of the six functions graphed below, compare the three graphs in the top row to the three graphs in the bottom row. What do you notice?



**6)** For each function, place a "  $\sqrt{}$  " in the appropriate columns. Each row should have two "  $\sqrt{}$  ".

| Function | Graph is   | Graph is     | Coefficient of $x^2$ : | Coefficient of $x^2$ : |
|----------|------------|--------------|------------------------|------------------------|
|          | Concave Up | Concave Down | a > 0                  | <i>a</i> < 0           |
| f(x)     | ✓          |              |                        |                        |
| g(x)     |            |              |                        |                        |
| h(x)     |            |              |                        | _                      |
| p(x)     |            | $\checkmark$ |                        |                        |
| q(x)     |            | ✓            |                        |                        |
| r(x)     |            | ✓            |                        |                        |



**8)** A quadratic function  $f(x) = ax^2 + bx + c$ will have two x-intercepts if the graph crosses the x-axis at two points. For each of the functions above in question 7, Α. place two points on each graph to show the locations of the x-intercepts. (in red) However, some quadratic functions do not have Β. any x-intercepts: their graphs will never cross the x-axis. Consider the four cases shown below. Working with a partner, circle the two cases that are guaranteed to have x-intercepts, and place an asterisk, "\*" next to the two cases that MAY NOT have x-intercepts.  $\underline{Case 1}$ : a > 0 and c > 0  $\underline{Case 2}$ : a > 0 and c < 0 <u>Case 3</u>: a < 0 and c < 0 <u>Case 4</u>: a < 0 and c > 0