Functions 6a - Inverse Functions From Graphs \& Tables

Standards: F-BF. 4 - Find Inverse Functions ($4 \mathrm{a} \& 4 \mathrm{c}$)
GLO: \#3 Complex Thinker
Math Practice: \#2 Reason abstractly \& quantitatively Learning Targets:
How do you find inverse values from a graph and table?

To evaluate a function means to identify a range/output value (e.g. $f(x)$) corresponding to a domain/input value (e.g. x).

An Inverse Function reverses or "undoes" the

input \rightarrow output process resulting in an output \rightarrow input process

For inverse type questions, you are given a range/output value and asked to find the corresponding domain/input value that yields the given output.

1. Timmy's Taxi charges an initial fee and then a certain amount of money per mile or fraction thereof. The table shows the cost \mathbf{C} of using Timmy's Taxi as a function of the number of miles driven \boldsymbol{m}.
a. How much will it cost for a 7 mile ride? 并 11.92
b. How many miles can you travel for $\$ 15.55$? 10 miles
c. How many miles can you travel for $\$ 9.50$? 5 miles
d. How much will it cost for a 12 mile ride? \$17.97
e. How many miles can you travel

m (miles)	$\mathrm{C}(\mathrm{m})$ (cost)
1	4.66
2	5.87
3	7.08
4	8.29
5	9.50
6	10.71
7	11.92
8	13.13
9	14.34
10	15.55
11	16.76
12	17.97

Question la asks you to evaluate function C at $\mathrm{m}=7$. The algebraic notation representing this problem should be very familiar to you: $C(7)$. The value of $C(7)$ is the answer to the question: "How much would it cost for a 7 mile ride?"

Question 1b is an inverse-type question. One way you could ask this question with function notation would be as a fill in the blank: $C(\square)=15.55$.

In mathematics we use a special notation for inverse-
type questions. You need to be familiar with this notation and be able to explain its meaning.

(Say "C inverse of m")
Question in words: How many miles can you travel for $\$ 15.55$?

Question using inverse notation: $C^{-1}(15.55)=$?

With this inverse notation, the "inputs" and "outputs" of function C are switched. We now input the cost and want to know the number of miles that would result in that cost.

Caution: The notation used for inverse functions uses a superscript of " -1 " that looks like an exponent. It is not! The negative one, therefore, does not mean "reciprocal". That is, $f^{-1}(x)$ is not the same as $\frac{1}{f(x)}$, which is actually written as $(f(x))^{-1}$.
2. Functions f, g, and h are given below with tables. Use these tables to evaluate the following.
(lIst column)
$f(3)=-2$
$g^{-1}(\stackrel{\zeta}{0})=-5$
$f^{-1}(-1)=8$

x	$f(x)$
-1	-4
3	$\rightarrow-2$
$4<$	5
$8<$	-1
11	3

x	$g(x)$
$-5<$	0
-3	1
0	3
2	6
5	2

x	$h(x)$
3	1
7	9
9	2
15	-6
16	15

$$
\begin{aligned}
& \text { input } \\
& h(15)=\frac{-6}{\text { output }} \\
& f^{-1}(5)=4
\end{aligned}
$$

2. Functions f, g, and h are given below with tables. Use these tables to evaluate the following.
(Ind column) output

$$
g^{-1}(2)=5
$$

x	$f(x)$
-1	-4
3	-2
4	5
8	-1
11	3

x	$g(x)$
-5	0
-3	1
0	3
2	\rightarrow
$5<2$	

x	$h(x)$
3	1
7	9
9	>2
15	-6
$16<$	15

$$
\begin{aligned}
& \curvearrowleft^{\text {output }} \\
& h^{-1}(15)=16 \\
& \text { input } \\
& h(9)=2
\end{aligned}
$$

2. Functions f, g, and h are given below with tables. Use these tables to evaluate the following.

3. The Kealohas are filling their swimming pool with a garden hose. The height \boldsymbol{h} of the water in the pool measured in centimeters is a function of time \boldsymbol{t}. Here \boldsymbol{t} is measured in minutes, where $\boldsymbol{t}=0$ represents the moment when the garden hose was turned on.

Describe, in words, the meaning of the following. The first one has been done as an example.
Note: your answers should read as complete sentences.
a) $h(60)=$ The height of the water in centimeters 60 minutes after the hose is turned on.
b) $h^{-1}(100)=$ The time in minutes after the hose is turned on that the water is 100 cm high.
c) $h(100)=$ The height of the water in cm, 100 minutes after hose is turned on.
d) $h^{-1}(60)=$ The time in minutes after the hose is turned on that the water is 60 cm high.
e) $h(45)=$ The height of the water in cm . 45 minutes after the hose is turned on.
f) Use what you previously learned about composite functions to explain why $h^{-1}(h(20))=20$
$h(20) \rightarrow$ The hight of water in cm 20 minutes after hose is turned on.
$h^{-1}(h(20)) \rightarrow$ The time in minutes that the height of the water was after 20 minutes of the hove being on.
4. The graph of a linear function, $g(x)$, is shown below. The scale used on the x-axis is 1 unit and the scale used on the y-axis is 50 units.

Use the graph of $g(x)$ to complete the chart below. Each row should have all 3 columns completed.

	Question	Re-write the question using function notation	Answer the question
A.	What is the value of $g(x)$ when $x=8$?	$g(8)$	150
B.	For what value of x is $g(x)=250$?	$g^{-1}(250)$	16
C.	What is the value of $g(x)$ when $x=0$?	$g(0)$	50
D.	What is the value of $g(x)$ where $x=4$?	$9(4)$	100
E.	For what value of x is $g(x)=125 ?$	$g^{-1}(125)$	6
F.	For what value of x is $g(x)=150^{?}$	$g^{-1}(150)$	8
G.	What is the value of $g(x)$ when $x=14$?	$g(14)$	225

