Polynomials 2b - End Behavior (Factored Form)

Standards: A-SSE.1.a, A-SSE.1.b, F-IF.7c
GLO: \#3 Complex Thinker HW\#5:
\#1-2
Math Practice:
Look for and express regularity in repeated reasoning.

Learning Target:

How can we find the degree, LC, and y-intercept quickly in factored form?

Review from last time:

$$
\begin{array}{llll}
+x^{\text {even }} \uparrow & \ddots & -x^{\text {even }} \downarrow & \downarrow \\
+x^{\text {odd }} \downarrow & \uparrow & -x^{\text {odd }} \uparrow & \downarrow
\end{array}
$$

Question: How can we determine the degree, leading coefficient, and y-intercept of a polynomial function written in factored form?

An answer (the long one): Use multiplication to first convert the polynomial to standard form.

Practice: determine the degree, leading coefficient and y-intercept of the following functions by first rewriting the polynomial in standard form.

1) $f(x)=\frac{3 x}{3 x}(x+1)(x-4)(x \vec{x}) 3 x^{4}$

2) $f(x)=-2(2 x+5)(x-3)^{2}$

Another answer (the more efficient one):

- The degree and leading coefficient can be determined by multiplying the leading term from each factor.
- The y-intercept can be determined by plugging in $x=0$ and evaluating.

Practice: determine the degree, leading coefficient and y-intercept of the following functions by using the more efficient strategy described above.

$$
\text { 3) } f(x)=5 x(3 x-2)(x+4)^{3}
$$

Degree: 5

$$
5 x(3 x-2)(x+4)(x+4)(x+4)
$$

$$
\begin{aligned}
& 5 x(3 x-2)(x+4)(x+4)(x+4) \quad \text { LC: } 15 \\
& 5 x \quad 3 x \times \underset{x}{x} \times \sqrt{4} \times \text {-int: }(0) 0)
\end{aligned}
$$

$$
\begin{array}{rl}
5 x & 3 x
\end{array} \quad x \quad x \quad{ }_{f l}^{x}(0)=5(0)(3(0)-2)(0+4)^{3} \quad 15 x^{5} y \text {-int: }(0,0)
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { 4) } f(x)=(x+1)^{2}(x-4)(-2 x+3)^{2} & \text { Degree:5 } \\
(x+1)(x+1)(x-4)(-2 x+3)(-2 x+3) & \text { LC: } 4
\end{array} \\
& \begin{array}{ll}
\text { 4) } f(x)=(x+1)^{2}(x-4)(-2 x+3)^{2} & \text { Degree:5 } \\
(x+1)(x+1)(x-4)(-2 x+3)(-2 x+3) & \text { LC: } 4
\end{array} \\
& \begin{array}{ll}
\text { 4) } f(x)=(x+1)^{2}(x-4)(-2 x+3)^{2} & \text { Degree:5 } \\
(x+1)(x+1)(x-4)(-2 x+3)(-2 x+3) & \text { LC: } 4
\end{array} \\
& \times \quad \times \quad-2 x \quad-2 x \underset{4}{\longrightarrow} x^{5} \text { y-int: }(0,-36) \\
& f(0)=(0+1)^{2}(0-4)(-2(0)+3)^{2} \\
& =(1)^{2}(-4)(3)^{2} \\
& =(1)(-4)(9)=-36
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1) } \begin{aligned}
f(x)= & (x-2)(x+5)(x+3) \\
\times & \times \times x^{3}
\end{aligned} \\
& \text { 1) } \begin{aligned}
& f(x)=(x-2)(x+5)(x+3) \\
& \times \quad \times \quad \times \longrightarrow x^{3}
\end{aligned} \\
& f(0)=(0-2)(0+5)(0+3) \\
& =(-2)(5)(3) \\
& =-30 \\
& \text { 2) } f(x)=-5(x-1)^{2}(x+2) \\
& -5(x-1)(x-1)(x+2) \\
& -5 \times \times \times \rightarrow-5 x^{3} \\
& f(0)=-5(0-1)^{2}(0+2) \\
& =-5(-1)^{2}(2)=-10 \\
& \text { Degree: } 3 \\
& y \text {-int: }(0,-30) \\
& \text { Degree: } 3 \uparrow \\
& \text { LC: }-5 \\
& \text { y-int: }(0,-10)
\end{aligned}
$$

