Name _____ Per _____ Date _____

1. Consider the following functions: f(x) is given graphically, g(x) is given as a chart of values, and h(x) is given symbolically. Compute the below composite function values.

x	g(x)
-2	-3
-1	1
0	-4
1	0
2	0
3	-1
4	2

$$h(x) = 2x - 1$$

a. f(g(2)) =

b. g(h(2)) =

c. g(f(1)) =

d. g(g(3)) =

e. g(f(h(2))) =

2. Given that $f(x) = 4x^2$, $g(x) = 3\sqrt{x}$, and $h(x) = \frac{-2}{x}$, compute the following compositions, simplifying where possible.

a.
$$h(f(x)) =$$

b. h(g(4)) =

c. g(f(x)) =

d. f(h(1)) =

e. f(h(-1)) =

f. f(g(x)) =

3. For the following composite function *h*, identify functions *f* and *g* so that $h = f \circ g$. **a.** $h(x) = (3x-1)^2 + 5$ f(x) = g(x) =

b.
$$h(x) = 4(x-2)^2 + 7(x-2) - 1$$
 $f(x) = g(x) =$

c.
$$h(x) = \sqrt{x^2 - 3x}$$
 $f(x) = g(x) =$

d.
$$h(x) = \frac{2}{x^2 + 1}$$
 $f(x) = g(x) =$