Polynomials 2a - End Behavior	
<u>Standards:</u> A-SSE.1.a, A-SSE.1.b, F-IF.7c	<u>HW#4</u>
GLO: #3 Complex Thinker	#1-3
Math Practice: Look for and express regularity in repeat Learning Target: What characteristics tell you about the e behavior?	ed reasoning. end

Summary:

As you look back over your graphs for your what can you conclude about the left and right <u>end behavior</u> (i.e. which way do the two ends of the function point)?

Why do you think that all cubic polynomials (3rd degree) have similar end behavior regardless of the terms in the polynomial other than the leading 3rd degree term?

Because X³ has a bigger effect than something times X.

Why is it that even degree polynomials behave differently from odd degree polynomials?

Even degrees mimic a parabola while odd degrees mimic a linear graph.

The number at the end of the function's symbolic representation (the constant term) identifies what part of the graph? <u>y-intercept</u>. Look back at your graphs to see for yourself.

Notice that a cubic polynomial (a
$$3^{rd}$$
 degree polynomial)
can have zero "turns" as is the case with $f(x) = x^3$ or it can
have two turns as is the case with $f(x) = -x^3 + 3x$. A "turn"
here refers to a point where the function changes
direction from increasing to decreasing. In mathematical
terms it is referred to as a relative maximum or minimum.
For example, a parabola has a turn at its vertex. Is it
possible for a cubic polynomial to have exactly one turn?
If so, graph one. If not, explain why it is not possible.

ex:
Identify degree,
C, s, y-int. Then,
graph end behavior.

 $m(x) = -2x^2 + 4x^3 + 17x^2 + 5x - 4$
D: 7 (opp direction)
LC: -2 (anding down)
y-int: (0,-4)