Polynomials 2a - End Behavior

Standards: A-SSE.1.a, A-SSE.1.b, F-IF.7c

HW\#4

GLO: \#3 Complex Thinker \#1-3

Math Practice:

Look for and express regularity in repeated reasoning. Learning Target:
What characteristics tell you about the end behavior?

Set \#1

$$
\begin{aligned}
& y=5 \\
& y=-2 \\
& y=7
\end{aligned}
$$

The graphs of polynomial functions of degree 0 are \quad horizontal

Set \#2

$$
\begin{aligned}
& m=\frac{-2}{3} \\
& b=1 \\
& m=\frac{2}{1} \\
& b=-3 \\
& b=-\frac{2}{3} x+1 \\
& m=\frac{-1}{1} \\
& b=5
\end{aligned} \quad y=-x+5
$$

$$
y=2 x-3
$$

The graphs of polynomial functions of degree 1 are linear

Do the left and right ends of each function head the same direction or opposite directions? If the leading coefficient is POSitive, then the graph increases to the right. If the leading coefficient is negative, then the graph decreases to the right.

Set \#3

y-int: $(0,5)$ concave up vertex: $y=x^{2}+5$
vertex: $(2,3)$

$$
\begin{aligned}
& :(2,3) \quad \text { concave } \\
& \text { down } \\
& f(x)=-(x-2)^{2}+3
\end{aligned}
$$

y-int: $(0,9) \quad x$-int: $(-3,0)$

concave $g(x)=x^{2}+6 x+9$
up $=(x+3)(x+3)$
vertex: $(-3,0)$
The graphs of polynomial functions of degree 2 are parabolas

Do the left and right ends of each function head the same direction or opposite directions? If the leading coefficient is \square positive , then the graph opens up.

If the leading coefficient is negative, then the graph opens down.

Set\#4

$$
f(x)=x^{3}
$$

$$
g(x)=-x^{3}+3 x
$$

$$
h(x)=2 x^{3}-5 x^{2}-2 x+1
$$

The graphs of polynomial functions of degree 3 are curvy lines

Do the left and right ends of each function head the same direction or opposite directions? If the leading coefficient is pOSitive, then the graph increases to the right. If the leading coefficient is negative, then the graph decreases to the right.

Set \#5

$$
y=x^{4}
$$

$$
y=-2 x^{4}+6 x^{2}+x+1
$$

$y=0.5 x^{4}-2 x^{2}+2$

The graphs of polynomial functions of degree \qquad curvy lines

Do the left and right ends of each function head the same direction or opposite directions? If the leading coefficient is POSitive , then the graph opens up. If the leading coefficient is \square negative , then the graph opens down.

Set \#6

$y=x^{5}$

$y=x^{5}-5 x^{3}+4 x$

$$
y=-x^{5}+2 x
$$

The graphs of polynomial functions of degree 5 are curvy lines
Do the left and right ends of each function head the same direction or opposite directions? If the leading coefficient is \qquad positive , then the graph increases to the right. If the leading coefficient is \qquad negative then the graph decreases to the right.

Summary:

As you look back over your graphs for your what can you conclude about the left and right end behavior (ie. which way do the two ends of the function point)?

$$
\begin{array}{ll}
+x^{\text {even } \uparrow ~} \uparrow & -x^{\text {even }} \downarrow \downarrow \\
+x^{\text {odd }} \downarrow & \uparrow \\
-x^{\text {odd } \uparrow} \downarrow
\end{array}
$$

Why do you think that all cubic polynomials (3 ${ }^{\text {rd }}$ degree) have similar end behavior regardless of the terms in the polynomial other than the leading 3 rd degree term? Because x^{3} has a bigger effect than something times x.
Why is it that even degree polynomials behave differently from odd degree polynomials?
Even degrees mimic a parabola, while odd degrees mimic a linear graph.

The number at the end of the function's symbolic representation (the constant term) identifies what part of the graph? y-intercept _. Look back at your graphs to see for yourself.

Notice that a cubic polynomial (a 3rd degree polynomial) can have zero "turns" as is the case with $f(x)=x^{3}$ or it can have two turns as is the case with $f(x)=-x^{3}+3 x$. A "turn" here refers to a point where the function changes direction from increasing to decreasing. In mathematical terms it is referred to as a relative maximum or minimum. For example, a parabola has a turn at its vertex. Is it possible for a cubic polynomial to have exactly one turn? If so, graph one. If not, explain why it is not possible.

ex

Identify degree, LC, \& y-int. Then, graph end behavior. $m(x)=-2 x^{7}+4 x^{3}+17 x^{2}+5 x-4$ $D: 7$ (opp direction) LC: - 2 (ending down) y-int: $(0,-4)$

