DO NOW
 $$
f(x)=14 x
$$

Find the following:
a) $f(3)$
b) $f(t)$
$=14(3)$
$f(3)=42$
$=14(t)$
$f(t)=14 t$
c) $f(3 s)$
d) $f(2 x+5)$
$=14(35)$
$=14(2 x+5)$
$f(3 s)=42 s$

$$
f(2 x+5)=28 x+70
$$

Functions 5a-Composition of Functions

Standards: F-BF.1, F-BF.lc
GLO: \#3 Complex thinker
Math Practice: \#7 Look for and make use of structure

Learning Targets:

What does $f(g(x))$ mean?
How do you do a composition of functions?

Let's look at the following functions:

$$
h(x)=\sqrt{2-5 x} \quad k(x)=\frac{1}{3+7 x}
$$

While these two functions seem a little complicated, we can understand them better if we view each of them as just one function "inside" of another function.

For example, we can view $h(x)=\sqrt{2-5 x}$ as the linear function $g(x)=2-5 x$ on the inside and the square root function $f(x)=\sqrt{\text { on }}$ the outside. Thus, $h(x)$ is what you get when you replace the " x " in $f(x)=\sqrt{x}$ with $g(x)=2-5 x$. In other words, $h(x)=\sqrt{g(x)}=\sqrt{2-5 x}$. another function f).

In particular, we see that $h(x)=\sqrt{2-5 x}$
is the composition of the function f with the function g.

There are 2 ways to denote a composition:
$h(x)=f(g(x))$
h of x equals f of g of $\mathrm{x}^{\prime \prime}$

$$
h=f \circ g
$$

"h equals f composed with g"

- Notice that even though we say the function f first when reading this name, when evaluating f composed with g at x we first evaluate $g(x)$ and then evaluate f at $g(x)$ to get $f(g(x))$.
- If we want to designate only the name of this function and not its value at x we say that $h=f \circ g$.
- Order is important! $f(g(x)) \neq g(f(x))$...most of the time.
- $\mathrm{f}(\mathrm{g}(\mathrm{x}) \mathrm{)}$ does NOT mean multiply!! Do NOT do $f(x) \cdot g(x)$

We can create the composition of pretty much any two functions we've come in contact with.

Example 1: Suppose $f(x)=3 x^{2}$ and $g(x)=2 x-1$
a) To find $\mathrm{f}(\mathrm{g}(\mathrm{x})$) you want to plug g into f. Start with f and replace the x with g, that is, replace the x in $3 x^{2}$ with $(2 x-1)$.

$$
f(g(x))=3(\ldots)^{2}=3(2 x-1)^{2}
$$

$f(g(x))=12 x^{2}-12 x+3 \leftarrow 3\left(4 x^{2}-4 x+1\right)$
Notice that we were careful to put parentheses around the " $g(x)$ " portion that we are substituting for x. This is frequently necessary when dealing with the composition of functions.
b) What if we asked instead for $g(f(x))$? What would the expression be? Is it equal to $f(g(x))$?

$$
\frac{\frac{2\left(3 x^{2}\right)-1}{6 x^{2}-1}}{g(f(x))=6 x^{2}-1}
$$

For the compositions below, let:

$$
\begin{gathered}
k(x)=2 x^{2} \quad h(x)=3-7 x \quad p(x)=\sqrt{x} \\
q(x)=\frac{1}{x} \quad t(x)=|x|
\end{gathered}
$$

Example 2:
$h(k(x))$
b) $(h \circ k)(x)=3-14 x^{2}$

$98 x^{2}-84 x+18$
$p(h(x))$
c) $(p \circ h)(x)=\sqrt{3}$

$$
\sqrt{(3-7 x)}
$$

For the compositions below, let:

$$
\begin{gathered}
k(x)=2 x^{2} \quad h(x)=3-7 x \quad p(x)=\sqrt{x} \\
q(x)=\frac{1}{x} \quad t(x)=|x|
\end{gathered}
$$

Example 2:

e) $t(h(x))=|3-7 x|$

$$
h(t(x))
$$

f) $(h \circ+f(x)=3-7|x|$

