Functions1b - Function Representations

Standards F-IF.1, F-IF. 9

GLOs: \#3- Complex Thinker

Math Practices:

-Reason abstractly \& quantitatively
HW\#4: Func lb ws

Learning Target(s):

What are the various representations of functions and when should we use each type?

In the previous lesson we saw that functions are used to describe real world quantities (outputs) that usually change as inputs change. Frequently these quantities are described in words. We also represent these collections of input/output pairs in a more precise manner using:

- Graphs are visual representations that easily provide a lot of information.
- Tables are numeric representations that provide exact values, but only for a limited number of inputs.
- Symbolic representations capture all of the information in a single formula and provide an easy method for finding single outputs based on a single input (just evaluate the formula at the input value).

Symbolic Notation

The notation we would use to designate the Cost (C) for x-number of television sets is $C(x)$, which is read "C of x." output

- If a television costs $\$ 400$, then the cost for 3 sets would be represented as $C(3)=1200$;
- the cost for 5 sets would be $C(5)=2000$; and,
- in general, the cost for x sets would be $C(x)=400 x$.

1. Suppose we wish to create a function to represent the cost for purchasing songs on iTunes that sell for $\$ 1.29$ per song. Which of the following ($a-g$) are accurate representations of this function (x represents the number of songs purchased, $\mathrm{P}(\mathrm{x})$ represents the cost for purchasing x-many songs)? For each representation that fails, please explain why it fails.
a. $P(x)=1.29 x$, where $x \geq 0$.

$$
\begin{aligned}
& P(0)=1.29(0) \\
& P(0)=0 \quad 11
\end{aligned}
$$

为. $P(x)=x+1.29$, where $x \geq 0$.

$$
P(0)=(0)+1.29
$$

$$
P(0)=1.29 \quad \stackrel{11}{\perp}
$$

c.

x	$\mathrm{P}(\mathrm{x})$
0	0
1	1.29
2	2.58
3	3.87
4	5.16

x	$\mathrm{P}(\mathrm{x})$
5	6.25
10	12.5
15	18.75
20	25
25	31.25

$$
\begin{aligned}
& P(x)=1.29 x \\
& P(10)=1.29(10) \\
& P(10)=12.90
\end{aligned}
$$

\# of songs

Reflection
Of the problems (a-g) above that you selected as correct representations for the situation (buying iTunes songs at $\$ 1.29$ per song),
a) which representation (s) would be easiest to use to determine the price for 3 songs? Explain.
symbolic rep-all you do is plug 3 in table - the input 3 is in table for x. graph (for estimate)
b) which representation (s) above would be easiest to use to determine the price for 35 songs? Explain.
symbolic rep - all you do is plug 35 in for x.
c) What are some of the advantages to having four different representations for the same function?

- Double check your work with multiple representations.
- Some representations are easier to use than others.

2. The symbolic representations of the functions from question 2 are the following:

$$
\begin{array}{lll}
f(x)=2 x-96 & g(x)=-5 x & h(x)=5000 x-1450 \\
j(x)=-.02 x+.8 & k(x)=2^{x} &
\end{array}
$$

Determine each of the following values.
a. $f(100)$
b. $g(30)$

$$
\begin{aligned}
f(100) & =2(100)-96 \\
& =200-96 \\
f(100) & =104
\end{aligned}
$$

$$
\begin{aligned}
& g(30)=-5(30) \\
& g(30)=-150
\end{aligned}
$$

c. $h(1)$
d. $j(100)$

$$
\begin{aligned}
h(1) & =5000(1)-1450 \\
& =5000-1450 \\
h(1) & =3550
\end{aligned}
$$

$$
\begin{aligned}
j(100) & =-0.02(100)+0.8 \\
& =-2+0.8 \\
j(100) & =-1.2
\end{aligned}
$$

$$
\text { " j of } 100 \text { equals }-1.2^{\prime \prime}
$$

