Algebra 2 – SBA Prep #2

Quadratic Review:

1. Below are three equivalent forms of the same quadratic function.

A.
$$f(x) = -3x^2 + 12x - 9$$

B. $f(x) = -3(x-2)^2 + 3$
C. $f(x) = -3(x-1)(x-3)$

- i. Which form reveals the y-intercept without changing its form and what is the y-intercept?
- ii. Which form reveals the x-intercept(s) without changing its form and what is/are they?
- iii. Which form reveals the maximum value for f(x) without changing its form, and what is its value?
- 2. Rewrite the function f defined by $f(x) = x^2 + 3x 9$ in the form $f(x) = a(x-h)^2 + k$, where a, h, and k are constants.

3. Rewrite the function f defined by $f(x) = 16x^2 - 20x + 64$ in the form $f(x) = a(x-h)^2 + k$, where a, h, and k are constants.

4. Determine whether each function in the table represents the graph of the quadratic function shown. Select Yes or No for each function.

Function	Yes	No
$f(x) = (x-4)^2 - 4$		
f(x) = (x - 6)(x - 2)		
f(x) = (x + 6)(x + 2)		
f(x) = (x-4)(x+4)		
$f(x) = (x-2)^2 - 8$		

 Name

 Pd

5. Given the graph of the quadratic function f below and g(x) = (x-1)(x-4), select whether each statement is **True** or **False**.

f 10	Statement	True	False
8	The minimum value for $f(x)$ is greater than the minimum value for $g(x)$.		
4	The value of x when $f(x)$ is at its minimum is greater than the value of x when g(x) is at its minimum.		
	Both x-intercepts of $g(x)$ occur when x is less than zero.		
	The line of symmetry of $f(x)$ is $x = -2$.		

Integer Exponent Equivalencies

6. Rewrite an equivalent expression to $\frac{a^8}{a^2}$ in the form a^n .

- 7. Rewrite an equivalent expression to a^{12} in the form $(a^n)^m$.
- 8. Rewrite an equivalent expression to a^{-18} in the form $(a^n)^m$.

9. Rewrite an equivalent expression to
$$\frac{1}{(a^3)^5}$$
 in the form a^n .

10. Rewrite an equivalent expression to $(a^2a^3b^3)^6$ in the form a^nb^m .

Rational Exponent Equivalencies

11. Determine whether each expression is equivalent to $x^{\frac{7}{3}}$. Select Yes or No for each.

	Yes	No
$\sqrt[7]{x^3}$		
$\sqrt[3]{x^7}$		
$\sqrt{x^{\frac{7}{3}}}$		
$x^2 \sqrt[3]{x}$		
$\frac{x^7}{x^3}$		

12. Determine whether each expression is equivalent to $(2x^2)^{\frac{3}{5}}$. Select Yes or No for each.

	Yes	No
$8x^{10}$		
$x\sqrt[5]{8x}$		
$\sqrt[5]{2x^6}$		
$\sqrt[5]{8x^6}$		
$\sqrt[5]{8x^2}$		

13. Select an expression that is equivalent to
$$\left(\frac{1}{2}\right)x^{\frac{1}{6}} \cdot \left(\frac{1}{2}\right)x^{\frac{2}{3}}$$

a)
$$\sqrt{x}$$

b) $\frac{1}{2}\sqrt[3]{x}$
c) $\frac{1}{4}\sqrt[3]{x}$
d) $\frac{1}{4}\sqrt[6]{x^5}$

Solving:

14. A student solved $\sqrt{x^2 - 3} - 1 = 0$ in five steps as shown.

Step 1:
$$\sqrt{x^2 - 3} = 1$$

Step 2: $(\sqrt{x^2 - 3})^2 = (1)^2$
Step 3: $x^2 - 3 = 1$
Step 4: $x^2 = 4$
Step 5: $x = 2, x = -2$

Which statement is an accurate interpretation of the student's work?

- a) The student solved the equation correctly.
- b) The student made an error in Step 2.
- c) Only x = 2 is a solution to the original equation.
- d) Only x = -2 is a solution to the original equation.

15. Select the appropriate box to indicate the match of each table to its equation.

Та	ble A	 Ta	ble B	_	Ta	ble C
X	f(x)	X	f(x)		X	f(x)
0	0.00	0	0.00		0	0.00
1	1.41	1	1.41		1	2.00
2	2.83	2	2.00		2	2.83
3	4.24	3	2.45		3	3.46
6	8.49	6	3.46		6	4.90
8	11.31	8	4.00		8	5.66

Equation	Table A	Table B	Table C
$f(x) = 2\sqrt{x}$			
$f(x) = \sqrt{2x}$			
$f(x) = x\sqrt{2}$			

Algebra 2 – SBA Prep #2 Homework #4
 Name

 Pd ______ Date _____

1. A student solved $\sqrt{x+2} - x = 0$ in six steps as shown. g(x)

Step 1: $\sqrt{x+2} = x$ Step 2: $(\sqrt{x+2})^2 = (x)^2$ Step 3: $x+2 = x^2$ Step 4: $x^2 - x - 2 = 0$ Step 5: (x-2)(x+1) = 0Step 6: x = 2, x = -1Which statement is an accurate interpretation of the student's work? a. The student solved the equation correctly. b. The student made an error in Step 4. c. Only x = 2 is a solution to the original equation. d. Only x = -1 is a solution to the original equation.

2. The equation $f(x) = -\frac{1}{2}(x+3)(x-5)$ represents f(x) and the graph represents g(x).

Select whether each statement is **true** or **false** about the given functions.

	Statement	True	False
a.	The line of symmetry of $g(x)$ is $x = 2$		
b.	The maximum of $g(x)$ is less than the maximum of $f(x)$.		
c.	The value of x when $f(x)$ is at the maximum is less than the value of x when $g(x)$ is at the maximum.		

- **3.** Write an equivalent expression to $(-2x^2y)(3x^4y^3)$
- 4. Select an expression that is equivalent to $x^{\frac{1}{4}} \cdot \sqrt[6]{x^3}$

A.
$$x^{\frac{3}{4}}$$

B. $x^{\frac{3}{24}}$
C. $x^{\frac{4}{10}}$
D. $x^{\frac{3}{24}}$

5. The equation $f(x) = -(x-4)^2 + 5$ represents f(x) and the graph below represents g(x).

Select whether each statement is **true** or **false** about the given functions.

Statement	True	False
A) The line of symmetry of $g(x)$ is		
x = -5		
B) The maximum of $g(x)$ is less		
than the maximum of $f(x)$.		
C) The value of x when $f(x)$ is at		
the maximum is less than the		
value of x when $g(x)$ is at the		
maximum.		
D) The <i>y</i> -intercept of $g(x)$ is greater than the <i>y</i> -intercept of $f(x)$.		

6. Determine whether each expression is equivalent to $\sqrt[3]{3^2} \cdot \sqrt[3]{3^5}$. Select Yes or No for each in the table at the right.

	Yes	No
$3^{\frac{7}{3}}$		
9 ³ √3		
$3^{\frac{10}{3}}$		
3 ²¹		
$3^{\frac{21}{10}}$		
$3^{\frac{3}{7}}$		

7. Mr. TakiGUCCI solved the following equation 3(x+4) = 4(x+7)+1, his steps are shown below:

STEP 1:	3(x+4) = 4	(x+7)+1			
STEP 2:	3x + 12 = 4x	x + 28 + 1			
STEP 3:	3x + 12 = 4x	x + 27			
STEP 4:	12 = x - x	+ 27			
STEP 5:	-15 = x				
T.'s mistake:	STEP 1	STEP 2	STEP 3	STEP 4	STEP 5

Part A Identify Mr. T.'s mistake: (circle the step where the mistake was made)

Part B: Identify the actual solution

8. Mike solved the problem $(3m^2 - 2m + 4) \div (m - 3)$. His work is shown in the steps below:

	3m+7
	$(m-3)3m^2 - 2m + 4$
Step 1:	$3m^2-9m$
Step 2:	7 <i>m</i> + 4
Step 3:	7m - 21
Step 4:	25
Step 5:	The remainder is 25.
Step 6:	The answer is $3m + 7 + \frac{25}{3m^2 - 2m + 4}$

<u>Part A</u>: Select/Circle the first step that contains a mistake.

<u>Part B</u>: Find the correct solution(s) by selecting from the possible solutions shown below:

No Solution	All Real Numbers	$3m + 7 + \frac{25}{m-3}$
3 <i>m</i> +7	3 <i>m</i> +32	$m-3+\frac{25}{3m+7}$

						FUNCTION	NOT FUNCTION
$\frac{x}{f(x)}$	-1 6	5 1	23	-1 4	2 2		
x g(x)	0 -5	1	2 0	3 -2	4		
x t(x)	0 5	3	4	4	7 1		

9. Of the following tables select which are functions and not functions:

10. Which graph represents the cost, y, in dollars, to buy a grapefruit that costs \$1.50?

11. This graph shows the amount of gas, in ounces, in a lawn mower gas tank, modeled as a function of time.

Determine whether each statement is true according to the graph. Select True or False for each statement.

Statements	T	F
The maximum amount of gas in the tank was 60 ounces.		
The amount of gas in the gas tank is at maximum at 0 minutes.		
The gas tank will be empty at 60 minutes.		