Algebra 2 - SBA Prep \#2
Name
Pd \qquad Date

Quadratic Review:

1. Below are three equivalent forms of the same quadratic function.
A. $f(x)=-3 x^{2}+12 x-9$
B. $f(x)=-3(x-2)^{2}+3$
C. $f(x)=-3(x-1)(x-3)$
i. Which form reveals the y-intercept without changing its form and what is the y-intercept?
ii. Which form reveals the x -intercept(s) without changing its form and what is/are they?
iii. Which form reveals the maximum value for $f(x)$ without changing its form, and what is its value?
2. Rewrite the function f defined by $f(x)=x^{2}+\mathbf{3 x - 9}$ in the form $f(x)=a(x-h)^{2}+k$, where a, h, and k are constants.
3. Rewrite the function f defined by $f(x)=\mathbf{1 6} x^{2} \mathbf{- 2 0} x+\mathbf{6 4}$ in the form $f(x)=a(x-h)^{2}+k$, where a, h, and k are constants.
4. Determine whether each function in the table represents the graph of the quadratic function shown. Select Yes or No for each function.

Function	Yes	No
$f(x)=(x-4)^{2}-4$		
$f(x)=(x-6)(x-2)$		
$f(x)=(x+6)(x+2)$		
$f(x)=(x-4)(x+4)$		
$f(x)=(x-2)^{2}-8$		

5. Given the graph of the quadratic function f below and $g(x)=(x-1)(x-4)$, select whether each statement is True or False.

Statement	True	False
The minimum value for $f(x)$ is greater than the minimum value for $g(x)$.		
The value of x when $f(x)$ is at its minimum is greater than the value of x when $g(x)$ is at its minimum.		
Both x-intercepts of $g(x)$ occur when x is less than zero.		
The line of symmetry of $f(x)$ is $\mathrm{x}=-2$.		

Integer Exponent Equivalencies

6. Rewrite an equivalent expression to $\frac{a^{8}}{a^{2}}$ in the form a^{n}.
7. Rewrite an equivalent expression to a^{12} in the form $\left(a^{n}\right)^{m}$.
8. Rewrite an equivalent expression to a^{-18} in the form $\left(a^{n}\right)^{m}$.
9. Rewrite an equivalent expression to $\frac{1}{\left(a^{3}\right)^{5}}$ in the form a^{n}.
10. Rewrite an equivalent expression to $\left(a^{2} a^{3} b^{3}\right)^{6}$ in the form $a^{n} b^{m}$.

Rational Exponent Equivalencies

11. Determine whether each expression is equivalent to $x^{\frac{7}{3}}$. Select Yes or No for each.

	Yes	No
$\sqrt[7]{x^{3}}$		
$\sqrt[3]{x^{7}}$		
$\sqrt{x^{\frac{7}{3}}}$		
$x^{2} \sqrt[3]{x}$		
$\frac{x^{7}}{x^{3}}$		

12. Determine whether each expression is equivalent to $\left(\mathbf{2} x^{2}\right)^{\frac{3}{5}}$. Select Yes or No for each.

	Yes	No
$\mathbf{8} x^{10}$		
$x \sqrt[5]{\mathbf{8 x}}$		
$\sqrt[5]{2 x^{6}}$		
$\sqrt[5]{\mathbf{8} x^{6}}$		
$\sqrt[5]{\mathbf{8} x^{2}}$		

13. Select an expression that is equivalent to $\left(\frac{\mathbf{1}}{\mathbf{2}}\right) x^{\frac{1}{6}} \cdot\left(\frac{\mathbf{1}}{\mathbf{2}}\right) x^{\frac{2}{3}}$
a) \sqrt{x}
b) $\frac{1}{2} \sqrt[3]{x}$
c) $\frac{1}{4} \sqrt[3]{x}$
d) $\frac{1}{4} \sqrt[6]{x^{5}}$

Solving:

14. A student solved $\sqrt{x^{2}-3}-\mathbf{1}=\mathbf{0}$ in five steps as shown.

Step 1: $\sqrt{x^{2}-\mathbf{3}}=\mathbf{1}$
Step 2: $\left(\sqrt{x^{2}-\mathbf{3}}\right)^{2}=(\mathbf{1})^{2}$
Step 3: $x^{2}-\mathbf{3}=\mathbf{1}$
Step 4: $x^{2}=4$
Step 5: $x=\mathbf{2}, x=\mathbf{- 2}$

Which statement is an accurate interpretation of the student's work?
a) The student solved the equation correctly.
b) The student made an error in Step 2.
c) Only $x=2$ is a solution to the original equation.
d) Only $x=-2$ is a solution to the original equation.
15. Select the appropriate box to indicate the match of each table to its equation.

Table A

\mathbf{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	0.00
1	1.41
2	2.83
3	4.24
6	8.49
8	11.31

Table B

\mathbf{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	0.00
1	1.41
2	2.00
3	2.45
6	3.46
8	4.00

Table C

\mathbf{x}	$\boldsymbol{f}(\boldsymbol{x})$
0	0.00
1	2.00
2	2.83
3	3.46
6	4.90
8	5.66

Equation	Table A	Table B	Table C
$f(x)=\mathbf{2} \sqrt{x}$			
$f(x)=\sqrt{2} x$			
$f(x)=x \sqrt{2}$			

Algebra 2 - SBA Prep \#2
Homework \#4

Name
Pd__ Date \qquad

1. A student solved $\sqrt{x+2}-x=0$ in six steps as shown. $g(x)$

Step 1: $\sqrt{x+2}=x$
Step 2: $(\sqrt{x+2})^{2}=(x)^{2}$
Step 3: $x+2=x^{2}$
Step 4: $x^{2}-x-2=\mathbf{0}$
Step 5: $(x-2)(x+\mathbf{1})=\mathbf{0}$
Step 6: $x=\mathbf{2}, x=\mathbf{- 1}$

Which statement is an accurate interpretation of the student's work?
a. The student solved the equation correctly.
b. The student made an error in Step 4.
c. Only $x=2$ is a solution to the original equation.
d. Only $x=-1$ is a solution to the original equation.
2. The equation $f(x)=-\frac{1}{2}(x+3)(x-5)$ represents $\boldsymbol{f}(\boldsymbol{x})$ and the graph represents $\boldsymbol{g}(\boldsymbol{x})$.

Select whether each statement is true or false about the given functions.

Statement	True	False
a. The line of symmetry of $g(x)$ is $x=2$		
b. The maximum of $g(x)$ is less than the maximum of $f(x)$.		
c. The value of x when $f(x)$ is at the maximum is less than the value of x when $g(x)$ is at the maximum.		

3. Write an equivalent expression to $\left(-2 x^{2} y\right)\left(3 x^{4} y^{3}\right)$
4. Select an expression that is equivalent to $x^{\frac{1}{4}} \cdot \sqrt[6]{x^{3}}$
A. $x^{\frac{3}{4}}$
B. $x^{\frac{3}{24}}$
C. $x^{\frac{4}{10}}$
D. $x^{\frac{3}{24}}$
5. The equation $f(x)=-(x-4)^{2}+5$ represents $\boldsymbol{f}(\boldsymbol{x})$ and the graph below represents $\boldsymbol{g}(\boldsymbol{x})$.

Select whether each statement is true or false about the given functions.

Statement	True	False
A) The line of symmetry of $g(x)$ is $x=-5$		
B) The maximum of $g(x)$ is less than the maximum of $f(x)$.		
C) The value of x when $f(x)$ is at the maximum is less than the value of x when $g(x)$ is at the maximum.		
D) The y-intercept of $g(x)$ is greater than the y-intercept of $f(x)$.		

6. Determine whether each expression is equivalent to $\sqrt[3]{\mathbf{3}^{2}} \cdot \sqrt[3]{\mathbf{3}^{5}}$. Select Yes or No for each in the table at the right.

	Yes	No
$3^{\frac{7}{3}}$		
$9 \sqrt[3]{3}$		
$3^{\frac{10}{3}}$		
3^{21}		
$3^{\frac{21}{10}}$		
$3^{\frac{3}{7}}$		

7. Mr. TakiGUCCI solved the following equation $3(x+4)=4(x+7)+1$, his steps are shown below:

STEP 1: $\quad 3(x+4)=4(x+7)+1$
STEP 2: $\quad 3 x+12=4 x+28+1$
STEP 3: $\quad 3 x+12=4 x+27$
STEP 4: $\quad 12=x+27$
STEP 5: $\quad-15=x$
Part A Identify Mr. T.'s mistake: STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 (circle the step where the mistake was made)

Part B: Identify the actual solution
8. Mike solved the problem $\left(3 m^{2}-2 m+4\right) \div(m-3)$.

His work is shown in the steps below:

$$
m - 3 \longdiv { 3 m ^ { 2 } - 2 m + 4 }
$$

Step 1:

$$
\frac{3 m^{2}-9 m}{7 m+4}
$$

Step 3: $\quad \underline{7 m-21}$
Step 4: 25
Step 5: The remainder is 25.
Step 6: The answer is $3 m+7+\frac{25}{3 m^{2}-2 m+4}$
Part A: Select/Circle the first step that contains a mistake.
$\underline{\text { Part B: Find the correct solution(s) by selecting from the possible solutions shown below: }}$
No Solution
All Real Numbers
$3 m+7+\frac{25}{m-3}$
$3 m+7 \quad 3 m+32 \quad m-3+\frac{25}{3 m+7}$
9. Of the following tables select which are functions and not functions:

						FUNCTION	$\begin{gathered} \text { NOT } \\ \text { FUNCTION } \end{gathered}$
x	-1	5	2	-1	2		
$f(x)$	6	1	3	4	2		
x	0	1	2	3	4		
$g(x)$	-5	-2	0	-2	-5		
x	0	3	4	4	7		
$t(x)$	5	4	3	2	1		

10. Which graph represents the cost, y , in dollars, to buy a grapefruit that costs $\$ 1.50$?
a)
Cost of Grapefruit

b)

c)

d)

11. This graph shows the amount of gas, in ounces, in a lawn mower gas tank, modeled as a function of time.

Lawn Mower Gas Tank

Determine whether each statement is true according to the graph. Select True or False for each statement.

Statements	\boldsymbol{T}	\boldsymbol{F}
The maximum amount of gas in the tank was 60 ounces.		
The amount of gas in the gas tank is at maximum at 0 minutes.		
The gas tank will be empty at 60 minutes.		

