Learning Target:

How do you graph a piecewise function?

In the previous lesson on Absolute Value Functions we saw that for different values of x we sometimes need to define our function using a different symbolic representation.

For example, the solid line graph above represents the function $g(x)=\left|x^{2}-1\right|$. The dotted line represents part of the function defined by $f(x)=x^{2}-1$. Since those points on the graph of f with positive heights are unaffected by the absolute value, the parts of the graphs for f and g corresponding to $x \leq 1$ and $x \geq 1$ are identical.

1. Is there a way to symbolically represent that part of g lying between $x=-1$ and $x=1$ without using the absolute value symbol? Hint: What is the relationship between the symbolic representation of f and that of g for these values?

When a different symbolic formula is used for different parts of the domain we say that the function is defined in pieces and we call such a function a Piecewise Function.

Example: Let's write the previous absolute value function in terms of its separate pieces. When $f(x) \geq 0$, i.e. for $x \leq-1$ or $x \geq 1$, the absolute value does not affect f, so for those values of x, $f(x)=x^{2}-1$

For those values of x where $f(x)$ is negative, i.e. for $-1<x<1$, then the absolute value gives the negative of that negative value, which makes it positive. So, for these values $f(x)$ is given by $f(x)=-\left(x^{2}-1\right)=1-x^{2}$

Representing this as a single function we use the notation

$$
f(x)= \begin{cases}x^{2}-1 & x \leq-1 \\ 1-x^{2} & -1<x<1 \\ x^{2}-1 & x \geq 1\end{cases}
$$

Piecewise functions come up very naturally in other ways in the real world. For example, if you begin filling up your cylindrical swimming pool with a hose, the height of the water in the pool changes in a linear manner, with the slope dependent on the radius of the pool and the rate at which your hose is delivering the water. If after 3 hours you add a second hose the function that describes the height changes to a different linear function. So, how do we represent the height of the water in the pool as a single function, beginning from the time we started with only one hose until the pool is full?

Answer: Easy, we simply provide the two formulas separately and designate to which part of the domain each formula applies. For example, if our pool takes twenty hours to fill, we may define $h(t)=\dagger$ for values of \dagger between 0 and 3, assuming our pool fills one inch per hour using only a single hose, and then $h(t)=2 t+3$ for values of \dagger between 3 and 20, assuming the second hose provides an equal amount of water as the first.

We define this more concisely using the following notation:

$$
h(t)= \begin{cases}t & , 0 \leq t \leq 3 \\ 2 t+3 & , 3<t \leq 20\end{cases}
$$

$$
h(t)= \begin{cases}t & , 0 \leq t \leq 3 \\ 2 t+3 & , 3<t \leq 20\end{cases}
$$

2. Fill in the following based on the above definition of h :
a. $h(1)=$ \qquad 1 $h(t)=t \rightarrow h(1)=1$
b. $h(4)=$ \qquad $h(t)=2 t+3 \rightarrow h(4)=2(4)$
c. $h(3)=$ \qquad 3 $h(t)=t \rightarrow h(3)=3$

Graph the following functions given piecewise on the graph below.
3. $f(x)= \begin{cases}2 x-1, & x \leq 2 \\ \text { linear } \\ -x+2, & x>2\end{cases}$

$$
2 x-1 \quad-x+2
$$

x	y
2	3
1	1
0	-1
-1	-3

$$
\begin{array}{c|c}
x & y \\
\hline 2 & 0 \\
3 & -1 \\
4 & -2 \\
5 & -3
\end{array}
$$

What is the range of f ? \qquad

- All real numbers less than or equal to 3 .
- $\{y: y \leq 3\}$
- $(-\infty, 3]$

What is the range of f ? \qquad本

What is the range of f? \qquad

- All real numbers equal to 3 or less than 0 .
- $\{y: y=3$ or $y<0\}$
- $(-\infty, 0) \cup[3,3]$

7. Given the graph of f below, find its symbolic piecewise representation. Assume the non-linear part of the graph is parabolic.

8. Given the graph of f below, find its symbolic piecewise representation. Assume the non-linear part of the graph is parabolic.

$$
\begin{aligned}
& \quad \int_{2}^{y} \cdot \begin{array}{l}
m=\frac{-3}{-1}=3 \\
m=0 f(1,3)^{b}=o f
\end{array}= \begin{cases}x-4 & x \leq 1 \\
3 x & x>1\end{cases} \\
& b=\frac{-3}{-3}=1 \cdot(1,-3) \\
& m x+b
\end{aligned}
$$

