Learning Target:

How do you graph an absolute value function?

Absolute Value Functions

We now introduce a new basic type of function called the absolute value function. We have already seen the absolute value applied to a number. For example, $|-3|=3$, while | $5 \mid=5$.

The absolute value of a number is defined as its
distance from the number zero. Therefore, the absolute value of a number is always non-negative The absolute value of a function f is the function whose domain is the same as that of f and whose output at x is the absolute value of $f(x)$.

$$
\begin{aligned}
& \text { Absolute Value Function } \\
& f(x)=a|x-h|+k
\end{aligned}
$$

It's just like a quadratic in vertex form!

$$
\begin{array}{r}
f(x)=a(x-h)^{2}+k \\
2(x+7)^{2}-4
\end{array}
$$

Ex1: Graph

$$
\begin{aligned}
& f(x)=\frac{1}{2}|x+3|-1 \\
& a=\frac{1}{2} \quad h=-3 \quad k=-1 \\
& - \text { cusp }:(-3,-1)
\end{aligned}
$$

- concare up
- $m_{R}: \frac{1}{2} \rightarrow m_{L}:-\frac{1}{2}=\frac{1}{-2}$

Ex2: Graph

$$
\begin{aligned}
& g(x)=-2|x-1|+4 \\
& a=-2 \quad h=1 \quad k=4 \\
& \text { - cusp }=(1,4)
\end{aligned}
$$

- concare down
- $m_{R}:-2=\frac{-2}{1}$

1. Fill in the following table of values for $f(x)$ and its absolute value, $g(x) . \quad g(x)=\left|x^{2}-4\right|$

x	$\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-4$	$\mathrm{~g}(\mathrm{x})=\|\mathrm{f}(\mathrm{x})\|$
-3	5	5
-2	0	0
-1	-3	3
0	-4	4
1	-3	3
2	0	0
3	5	5

3. Transfer your graph of f to tracing paper. Fold the tracing paper along the x-axis. Place the folded tracing paper on the graph in such a manner that the x-axis on your graph matches the x-axis on the tracing paper (i.e. the bottom of your folded paper) and those points with positive values for $f(x)$ coincide on both pieces of paper. You will notice that now all of your points have positive height. Is there a correlation between your resulting graph, which you can see through the tracing paper, and your table of values for g ?
4. Explain the relationship between the graph of a function and the graph of the absolute value of the same function.

- The points below x-axis reflected over the x-axis to make the m positive.
- Parts of the graph have a similar shape.

5. Given the graph of f below, graph the absolute value of f on the same axis.

6. Use your graph of $f(x)=\left|x^{2}-4\right|$ from problem 2 to approximate solutions to the following equations. Mark the points) on the graph of g that provide the solution to each equation. The x-coordinates of these points will be your solutions. Note: each equation may or may not have more than one solution.
a) $\left|x^{2}-4\right|=0 \quad x=$ \qquad
b) $\left|x^{2}-4\right|=4 \quad \mathrm{x}=0,-2.7,2.7$
c) $\left|x^{2}-4\right|=3 \quad x=1,-1,-2.4,2.4$

