Module 6b: Altitudes of Triangles

Math Practice(s):

- -Attend to precision.
- -Look for & make sense of structure.

Learning Target(s):

-Use altitudes in similar triangles to solve for missing values in triangles.

Homework:

HW#7: 6b #1-2

Warm-up

1. Given the rectangle below with base length b and height h, state an equation that represents the formula for determining the area, A, of the rectangle.

- 2. Draw a diagonal in the rectangle below (with base length b and height h).
 - A. What do you think is true about the two triangles that

B. State an equation that represents the formula for determining the area, A, of one of the triangles.

$$A = \frac{1}{2} \cdot bh$$
 $A = \frac{bh}{2}$

b

3. Determine the area of the following triangles.

A.

$$A = \frac{1}{2}(8)(15)$$

$$A = 60 \text{ cm}^2$$

В.

$$A = \frac{1}{2}(x)(x)$$

When we want to compute the area of a non-right triangle, we must find an **altitude** to determine the "height" (h) of a triangle.

4. Graph the following points, then draw an altitude where you best see fit. Example 1 Example 2

Consider the triangle obtained by connecting the points (-2,0), (3,0), and (0,4).

Consider the triangle obtained by connecting the points (0, 0), (-2, 3), and (3, 0).

erase to show

Altitude of a Triangle (#VOC): The perpendicular line segment from a Vertex

to its opposite side

Since a triangle has 3 vertices, each triangle has exactly 3 altitudes

5. Each pair of triangles shown is similar. Determine the value of x. *Figures are not to scale.

$$\frac{FH}{F'H'} = \frac{15}{12} = \frac{5}{4}$$
 $\frac{5}{4} = \frac{x}{10}$

$$\frac{1}{3} = \frac{8}{x}$$

$$X = 24 \text{ units}$$

6. Explain why the following pair of triangles is NOT similar.

$$\frac{40}{80} = \frac{45}{90} = \frac{35}{72}$$

$$\frac{1}{2} = \frac{1}{2} = \frac{35}{72}$$

To be similar, alldimensions

must be proportional.

Since the altitudes do not reduce to $\frac{1}{2}$, like the sides do, the entire pair of triangles are not similar.